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Abstract

In this paper, we consider the Cesaro-mean operator I' acting on some
Banach spaces of measurable functions on (0,1), as well as its discrete
version on some sequences spaces. We compute the essential norm of this
operator on LP([0,1]), for p € (1,4o00] and show that its value is the
same as its norm: p/(p — 1). The result also holds in the discrete case.
On Cesaro spaces the essential norm of I' turns out to be 1. At last, we
introduce the Miintz-Cesaro spaces and study some of their geometrical
properties. In this framework, we also compute the value of the essential
norm of the Cesaro operator and the multiplication operator restricted to
those Miintz-Cesaro spaces.

Key words: Cesaro spaces, Cesaro operator, Miintz spaces, compact operator,
essential norm, Multiplication operator.
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1 Introduction

Throughout this paper, we denote by C = C([0, 1]) the space of continuous func-
tions on [0, 1] equipped with the supremum norm and by Cy the subspace of
C (resp. c¢) of functions vanishing at zero (resp. the space of convergent se-
quences). For p € [1,+00) and (€2, 1) a measure space, we denote as usual by
LP(u) = LP(Q, p) the Banach space of p-measurable functions f on € such that
[ £ll, = (Jo |fIPdp)*/P < co. In particular when i is the Lebesgue measure on
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[0,1] (resp. v the counting measure on N), we just use LP (resp. £F). For p = oo,
we denote by L (resp. £°°) the space of essentially bounded measurable func-
tions on [0, 1] (resp. the space of bounded sequences) endowed with its usual
norm.

One of the interesting questions in operator theory is to check whether an op-
erator acting on a Banach space is compact or not. This can be essentially
done by computing the essential norm, denoted by || - || (resp. || - |lew), Of
the underlying operator to see how far is its distance from the set of compact
operators (resp. weakly compact operators). This question has been adressed
by many authors and has been investigated for different operators acting on
several Banach spaces.

In this paper, we are interested in the Cesaro operator defined on Lebesgue
spaces and on Cesaro spaces. Recall that these latter, denoted by Ces, (p €
[1,00]), are defined on functions as the set of Lebesgue measurable complex
functions f on I = [0,1] endowed with the norm

x P 1/p
| flleg) = UI <;/0 f(t)|dt) dx} <o forl<p<oo

and

I fllc(sc) == sup <1/ f(t)|dt> < oo for p=coc.
0

z€l, x>0 \T

Also, they are denoted by ces, on complex sequences and defined as the set of
all u = (ug)g>1 such that

o n pq1/p
1
ullep) = [Z (n Z |uk|> 1 < oo whenl<p<oo

n=1 k=1
and
1 n
||U||c(oo) ‘= Sup — Z |uk\ < oo when p=oc.
n>1"1 b1

Note that Cesy is an L' (w)-space with the weight w(t) = log(4), and that ces; =
{0} (see [AM, Theorem 1]). The Cesaro operator is the map I' : L}, .([0,1)) —
C((0,1)) defined for any function f by

T(f)(z) = 313/091 f(t)dt where z € (0,1).

Clearly, this operator maps the space LP (p > 1) to itself through the Hardy
inequality but it does not preserve the space L'. In this case, we use the notation
Iy (resp. T'c(py) as the restriction of I' to LP (resp. Cesp). Similarly, the
definition of I' can be transposed to the Cesaro sequence operator vy, : £ — ¢

(p € (1,+00]) by
(i) = (jb Zuk>
k=1

In the same way, we denote by 7. () the extension of v, to the set ces,,.
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The Cesaro operators and Cesaro spaces were already studied on many aspects,
but lately the topic has received a particular interest, see for instance [ABR],
[CR], [AHLM] and the survey [AM]. Let us quote the result in [CR] where it
is proved that the non compactness property of the Cesaro operator acting on
a Cesaro space is a general phenomenon. However, the continuity does always
hold.

In this paper, we are interested in studying the default of compactness (resp.
of weak compactness) of those operators. Concretely, we compute their essen-
tial norms (resp. generalized essential norm) as well as their n‘"-approximation
numbers. Recall that this number, denoted by a,,(T), is the distance from any
operator T' to the set of all bounded linear operators of rank at most n — 1. In
other words, it measures the way of an operator to be of finite rank.

In the same context, we consider the restriction of the Cesaro operators to
particular spaces, namely the Miintz spaces [M] in order to check whether the
above properties still hold. It turns out that the geometry of such spaces plays
a fundamental role to get the compacity in some cases. Here, we recall that
a Miintz space M f is the closure in some Banach space E of the linear space
spanned by the monomials 2*» where A = (\,,)nen is an increasing sequence of
positive numbers satisfying the Miintz condition ) -, 1/, < oo.

The paper is divided into four parts. In Section 2, we show that the classi-
cal Miintz theorem holds for the Cesaro spaces. Namely, the space Mfes” is a
strict subspace of Ces, if and only if the Miintz condition holds (see Theorem
2.3). Moreover, we state a theorem ¢ la Clarkson-Erdis for those Miintz-Cesaro
spaces (see Propostion 2.7), as well as a bounded Bernstein-type inequality (see
Proposition 2.8). This yields to the following property of the Miintz-Cesaro
spaces: For any bounded sequence belonging to those spaces, there exist a func-
tion f and a subsequence that converges uniformly to f on every compact set
of [0,1) (see Corollary 2.9). In Section 3, we state some general criteria to get a
lower estimate for the essential norm of a bounded operator T : X — Y acting
between arbitrary Banach spaces X and Y. We then specify our result when Y
is an LP(u) space or a C(K) space. We use these tools in the sequel. In Section
4 and based on the previous section, we first compute the essential norm of the
continuous Cesaro operator (resp. discrete) acting on the Lebesgue space LP
(resp. ¢P) for p € [1,+o00]. We find that it is equal to p’ = ;27 for p €]1, 00|
(see Theorems 4.1 and 4.2) while it is 1 when p = oo (Theorems 4.3 and 4.4).
We also deduce the approximation numbers of these operators. In the second
part of Section 4, we study the Cesaro operators defined on the Cesaro spaces
Ces,, and ces, and show in Theorem 4.7 that their essential norms are all equal
to 1. We also consider the restriction of those operators to the Miintz-Cesaro
spaces Mfes’) for p € [1,400] and prove in Theorem 4.8 that the essential norm
is 1 for p € [1,400) and to % for p = oco. The last section is devoted to the
study of the compactness of the multiplication operator on the Cesaro function
spaces, Ty, : Ces, — Ces,, defined by Ty (f) = fe, for p € [1,00] and ¢ € L.
We prove that ||Ty||e = ||¢]| and when one restricts to the Miintz-Cesaro sub-
spaces, Ty A : MSGSP — Ces,, that | Ty alle = [1(1)] if ¢ is continuous at 1 (see
Theorems 5.2 and 5.4).
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2 Miintz theorem in Cesaro spaces

In this section, we show that the Miintz theorem holds in Cesaro spaces Ces,, by
using the Miintz theorems in C and in L' (see [M], [BE]). Hence, we can define
the Miintz-Cesaro spaces and study some of their properties. We start with the
following lemma which shows that the Cesaro function spaces are embedded
into L'([0, a]), for a € (0,1). We will use this lemma to prove the density of the
continuous functions in the Cesaro function spaces.

Lemma 2.1. Let p € [1,400], and 0 < a < b < 1. Then, the Cesaro function
spaces satisfy the following bounded inclusions

C C Ces, C L*([0,a]).

More precisely, for all f € Cesy,, we have

a b b b P b
/0|f(t)dt§(b—a)1/1’(/0 (T(f)(=)) dfﬂ) SmeHC(p% (1)

Moreover, if p =1, we have

10 1
e < g zy ) T < s Wl ¢

We point out that when a is close to 1 (more precisely when a is larger than
some a,, depending on p only), the sharpest version of the previous inequalities
is obtained for b = 1.

Proof. For a continuous function f on [0, 1], we obviously have || f|lc(p) < [/ floco-
For the right side inclusion, we let p € [1,+00) and f € Ces, to estimate the

norms:
112y > /Ob (% /OZ £(0)|dz) dz

> :(/:lf(tﬂdt)pdx

-
>0

IAIZ (0,01

In the case p = 400, we obtain easily || f||z1(j0,a)) < @llf|lc(oo) and this holds



also for a = 1. For p =1 and f € Ces;, we use Fubini’s theorem to obtain

1 flleq) z/ob (% /O$|f(t)dt)dx
b da

b
- [Vironae [
b

_ / In (b) ()]t
0 t
b
o () 1122 0.0

O

The following proposition gives an interesting property of the Cesaro spaces.
We will need this property to state the Miintz theorem in these spaces.

Proposition 2.2. For p € [1,400), the space of continuous functions, as well
as Co, is dense in Ces,. The statement is false for p = +oo since the space
Cesso 18 not separable.

Proof. For p = 1, the first assertions are clear as Ces; is a weighted L'-space.
Now, we focus on the case where p € (1,00). For this, we fix ¢ > 0 and a function
f € Ces,. As T(|f]) € LP, then there exists a number § € (0, §) satisfying

25 1
[ @@y <er ad [ @©Qf)@rde<er.
0 1

-0

By applying Inequality (1) of Lemma 2.1 with a = § et b = 20, we obtain

26 20 1
o < 5075 ([ (T "de) " < 2515

Since the space of continuous functions on [§,1 — §] and vanishing at points §
and 1— 4 is dense in L!([§,1— d]), there exists a continuous function ¢ on [0, 1]
such that

(i) ¢(t) =0 for any ¢ € [0,0] U[1 —6,1];

(i) |f — ellprsa—s) < 8" 7e.

1—

Then we get [|f — @llL1(jo,1-5]) < 30
the following

3=

¢ =: &’. This gives for any x € (0,1 — J]

K = o) = 3 [ 17— el < = =25,



Hence, we compute

& 1-46
5=ty = [ @UD@Par+ [ @(f - eh@yass
[ wir = eh@prds

1-6 1 1-6 T
dx 1 P
<eP4e? — — — |(t)dt t)dt) d
<ef+te /5 prr/pr(/o |f =) +/H|f()| ) z
» e’? ! , ”‘ ALY
< - -
S e =na (e +/0 F()ldt)"da

<sp+3pé’+2p(s’P/1 der/1 F(Ifl)(x)”dx)
- p—1 1-6 P J1-s

P
<Py 3 €p+2p((965) +5p)
p—1 2

P
<(1+ E +3—+2P)5P.
p—1 2

Therefore, we deduce that the space Cy is dense in Ces, as ¢ vanishes at the
point 0. We point out that in the case p = 1, the same proof works by using
Inequality (2) with @ = § et b = /5. Finally, to check the non-separability
of Cess, we just mention a short argument to justify it: For the sequence of

disjoint intervals (I,), given by I,, = ((n+1)" n,} the operator ® : >° — Cesy,

defined by
an n>2 Z Gnp ]II

embedds isomorphically ¢°° into a subspace of Cesy. Indeed, for any a =
(an)n>2 we have || ®(a)| ¢ (o0) > SUP, >0 F(|<I>(a)|)(%), and for any n > 2,

reta) () = [T et oo

k>n

_ml
> Jan 5 =l Y7 ]

k>n+1
| | n _ ||a||00 .
i+l n+1
We obtain that [|®(a)||c(e0) > e !00 and this finishes the proof. O

Using the preceding proposition and the Miintz theorems in C and in LP, we
state a Miintz theorem for the Cesaro function spaces as follows:

Theorem 2.3. Let A = (\;)72, be an increasing sequence of nonnegative real
numbers, 1 <p < 400 (resp. p=—+0o0). Then the following are equivalent:

(i) The space M(A) = span{z** : k € N} is dense in Ces, (resp. the space

span{l,z* 21 ...} is dense in the closure of C in Cesy,).

1
(ii) The sequence A satisfies Z — = +oo-
E>1 Ak



Moreover, if A satisfies the Mintz condition Y, o 1/A\p < +00, the sequence
(), is a minimal sequence in Ces, for any p € [1,+00]. In particular, for
any p € Ry such that p & A, we have dist(z#*, M(A)) > 0.

Proof. Assume that A satisfies ), ., 1/Ar = +00 and fix a continuous function
f on [0,1]. We first treat the case where p = +o00. By the Miintz theorem
on C, there exists a sequence of polynomials f,, € span{l,xz** z* ...} such
that ||fn — flleo = 0 when n — +o00. Using the boundedness of the inclusion
C C Cesy, we get that ||f, — fllcp) — 0 when n — +o0. Hence, the space
span{1,z* x>t ...} is dense in the closure of the continuous functions in Cesyp.
Now for the case where p € [1,+00), we take ¢ = p when p > 1 and any ¢ > 1
when p = 1. By the Miintz theorem in L?, we know that there exists a sequence
(fn)n € M(A) such that || f, — f|lg = 0 when n — +o00. Hence, we compute

1fn = Fllew) = ITUfn = fDllp < IT(fn = fDllg < ¢'llfn = fllg = 0.

In the last inequality, we use the well-known Hardy inequality. Finally, by
Proposition 2.2, we deduce the density. For the “only if” part, we consider a
sequence A satisfying > 1/\, < 400 and we fix 1 € Ry \ A. For any a € (0,1)
and for any Miintz polynomial f € M(A), we write

2" = fllow) = (L —a)?[[z* — fllLi(o.a)
1
=a(l - a)%/ [(au)* — f(au)|du
0

1
>(1—a)ra*t  inf o glly.
>(l—a)ra o 2" = gll1

According to the Miintz theorem in L', we have that i]\r/l[f(A) lz* —gll1 > 0.
g€
Hence M (A) is not dense in Ces,,. O

Remark 2.4. Even if A satisfies the condition ), -, 1/X, = +00, we need to
assume that 0 € A in order to approximate the constant functions by Miintz
polynomials in Cesy, because |1 — fllc() > [T(|1 — f|)(0)| = 1 if f € Co. But
this problem does not happen in the spaces Ces, when p € [1,+00). In other
words, thanks to Proposition 2.2, the space M (A) is dense in Ces, even when
Ao > 0.

Now, we can define the Miintz-Cesaro spaces as follows:

Definition 2.5. Let A = (A,)n>0 C Ry be an increasing sequence satisfying
the Mintz condition 1
— < .
Z h +00

n>1 n

For p € [1,400) (resp. p = +00), the classical Miintz space MY (resp. Mg°) is
defined as the closure of the space of Miintz polynomials M (A) in LP (resp. C).

In the same way, for p € [1,400], we define the Miintz-Cesdaro space M) P as
the closure of M(A) in Ces,. By Theorem 2.3, it is a strict subspace of Ces,.
Concretely, in the sequel, we shall always assume that the inequality, called
gap-condition,



is fulfilled in order to work with the spaces of analytic functions (see Proposition
2.7 below).

Remark 2.6. The norms | . [[¢(oo) and || . [[1 are equivalent on M (A). Indeed,
on the one hand we have || f||c(s0) > T'(|f])(1) = || f]|1, for any function f € Ces,.
On the other hand, by a bounded Bernstein-type inequality on M} (see [BE,
E.3 p. 178]) there exists a constant Cy/, € Ry such that for any f € M(A) we
have

flew < swp = [ pwldes sw < (sl
z€f0,1/2] T Jo ze(1/2,1] T Jo
1
< swp [fO]+2 [ |0
te[0,1/2] 0

< (Ci2+2)1 1l
Hence we get that Ml(\jes*”o = M}, and the spaces have equivalent norms.

The next proposition is a version of the Clarkson-Erdos theorem (see [CE],[S])
for the Miintz-Cesaro spaces. It is indeed a consequence of the Clarkson-Erdos
theorem in L? and in C.

Proposition 2.7. Letp € [1,400) (resp. p = —400) and let A = (A\;)72, be an
increasing sequence of non-negative real numbers. Assume that A satisfies the

Miintz and the gap conditions. For a function f € Ces, (resp. f € écesw), the

following are equivalent:
(i) f M.

(i) There exist f € Cesp, with f = f ae. on [0,1] and a sequence (an) of
complex numbers, such that

Va € [0,1), f(:c) = Z ana.

n=0

Proof. The case of Mfes‘” is actually free by the Clarkson-Erdos theorem in M} .

Nevertheless we see below that the proof for Mfes’) also holds for M/(\jes‘”. For
the part (i) = (i), we consider a sequence of Miintz polynomials (fy,), € M(A)
which tends to f in C(p) when n — +oc0. By the Hardy inequality, we have

IT(fn) = TNy < TS = fDIp = [[fa = Fllew):

Since I'(f) is the limit in L? (resp. in C) of a sequence of Miintz polynomials, we
have that I'(f) € M%. By the Clarkson-Erdos theorem in LP (resp. in C) (see
for instance [BE, E.1 p. 311]), we know that there exists a sequence (b,,) € C

which satisfies lim sup \bn|ﬁ <1, and that

Vo e [0,1), T(f)(z)= anxkn.

Now, we define the function fby f(m) =", bu(An + 1)a?e. Clearly, this series
converges uniformly on the compacts subsets of [0,1) because it has the same



radius of convergence as I'(f). Moreover, we have that I'(f)(z) = I'(f)(x)
for any x € [0,1) which gives that f = f almost everywhere. To prove that
(73) = (i), we follow the same lines as in [GL, Cor. 6.2.4]. For this, we let f €

—Cesoo . .
Ces, (resp. feC ©<) to be a function that satisfies f(z) = S0 g ana for

€ [0,1). As the series converges for any x € [0, 1), we have limsup |an|ﬁ <1
Given a function h on [0,1) and p € (0,1), we will denote by h, the function
defined by h,(t) = h(pt). For the sequence of partial sums (fn) € M(A)
given by f,,,(t) = >0, ant™*, we define the corresponding functions (f,,,), and
compute

< = Janle
5o = Umbollow < 2. 557,720

Therefore, f, € Mfesp for any p € (0,1). Now, we claim that lim,,; [|f —

Cesy

follcy = 0 which would give that f € My " and finish the proof of the
proposition. To check this, we let € > 0 and consider a continuous function g
satisfying || f — gllc(p) < €, when p is finite, and by assumption when p = +oo0.
The existence of such a function is assured by Proposition 2.2. Now, for any
p € (0,1) and h € Ces,, the estimate ||hy|lo) < 5Pl gives

If = follewy < Wfo = gollewm + 119 = gollewm + I1f = gllew)
1
< (= - - .
< (p +1)||f 9lew) + 19 = gpllo

The uniform continuity of g on [0, 1] implies lim,_,1 ||g—g,|/« = 0 and we obtain
as claimed that || f — f,|lc(p) < 2¢, and hence f € Mfesp, O

The following estimate is a bounded Bernstein-type inequality. To establish
such an estimate, we will use the analogue well known inequality in the classical
Miintz spaces.

Proposition 2.8. Letp € [1,+o0] and A = (A\,)n be a sequence of non-negative
numbers satisfying the Mintz and gap conditions. Then for every e € (0,1),
there exists a constant c(e,\) depending only on € and A such that

”f/”[o,l—e] < C(gaA)Hf”Cesp
for every Miintz polynomial f € span {xAU,x’\l , }

Proof. Let € € (0,1) and fix the two real numbers a,n € (0, 1) such that a(1 —
1) > 1 — e. For any Miintz polynomial f € M(A), we know from the bounded
Bernstein inequality in M} (see [BE, E.3 p. 178]) that there exists a constant
C), € R4 that does not depend on f and a satisfying

1(fa) lo,1-n) < Cyllfallr,

where f, is the function defined as in the proof of Proposition 2.7. Now, we
compute

1
Il fllces, = (L —a)|[fllz1(0,a])
1
=a(l —a)7 | fallx

a(l — a)%
> Cinll(fa)/”[O,lfn]-



By the choice of a and 1 above, we obtain the result with c¢(e, A) = —% . O
a(l—a)P

We finish this section with this last useful result. The proof follows the same

lines as in [AL, Cor. 2.5].

Corollary 2.9. Let A = (A\,)22, be an increasing sequence of non-negative
real numbers satisfying the Miintz and gap conditions. For any bounded se-
quence (fn)52, € M,(fesp, there exist f € Ces, and a subsequence (fy, )3, that
converges to f uniformly on every compact subset of [0,1).

Proof. Assume that (f,)n,>1 is a bounded sequence in M/(Sesf’ and fix ¢ > 0.
If Ao > 0 then M(A) C Cy and from Proposition 2.8 and the mean value
theorem, the sequence (f,), is bounded and equicontinuous on the compact
interval [0,1 —¢]. If A\g = 0, then by the Miintz theorem in Ces, (Theorem 2.3),
there exists § > 0 such that

inf tho — > 4,
S | 9llew) >

since A\ \g also satisfies the Miintz condition. Now, we write f, = f,(0)t* +g
with g € M(A\ Xo) and the previous estimate gives |f,,(0)| < || fnllc(p)- In this
case, we obtain that (f,), is bounded and equicontinuous on [0,1 — £]. Using
the Arzela-Ascoli theorem, we know that there exists an extraction (ng)g such
that (fyn,) converges uniformly on [0,1 — ¢]. By induction, we can construct a
sequence of infinite sets (S;);>1 of integers with N D .S; D Sy O --- such that
(fn)nes,; converges uniformly on [0,1 — %} By applying a diagonal method, we
obtain an infinite set S such that (f,), converges uniformly on every compact
subset of [0,1) to a measurable function f when n — +oo and n € S. Finally,
Fatou’s lemma (twice if p < +00) allows to obtain that || f||c(p) < sup, || fullcwm)
which finishes the proof. O

3 General Lemmas for the essential norm

In this section, we will give some general criteria to compute the essential norm.
We first recall a result from [AHLM].

Definition 3.1. We say that a sequence (im) is a block-subsequence of

meN
(J;n)n if there is a sequence of non empty finite subsets of integers (Im)meN

with max I, < min I,;,11, and ¢; € [0,1] such that for all m € N,
Z c;j=1 and %, = Z cjT;.
Jj€Ln JE€ELm

Lemma 3.2. [AHLM, Lemma 3.1] Let X, Y be two Banach spaces, and T :
X — Y be a bounded operator. Let (a:n)neN be a normalized sequence in X and
a > 0.

(i) Assume that for any subsequence (xW("))neN and any g € Y, we have
limsup ||T(zp(n)) — g > . Then ||T||c > o
n—+00

10



(ii) Assume that for any block-subsequence (‘%")nEN and any g € Y, we have

limsup ||T(in) — g|| > a. Then ||T|]e,w > .
n——+00

Definition 3.3. Let (X,d) be a metric space and @ € R. We say that a
sequence (Z, )y, € X is a-separated if d(zy, ) > o for all n # m.

The following lemma is a consequence of Lemma 3.2. It will be used to find a
lower estimate for the essential norm for some operators.

Lemma 3.4. Let X,Y be two Banach spaces, T : X — Y a linear operator
and o € Ry

(i) If the range of the unit ball T(Bx) contains an a-separated sequence, then
o
i > <

n such that

(ii) If the range of the unit ball T(Bx) contains a sequence (yn
2

I RN

any block-subsequence (Ym)m is a-separated, then ||T||¢ v

Proof. We prove only (i) since (4) is similar (and actually easier). Let (y,)n €
T(Bx) such that any block-subsequence (¥ )m Of (yn)n iS a-separated in Y.
Fix g € Y, as n # m € N, we have

« S ”gn _:Iij S Hgn _gH + ||fl]m _gH‘

~ « .
Therefore, there is at most one integer n € N such that ||y, — g|| < 3 which

yields limsup ||T(z,) — g|| > %- The result follows by Lemma 3.2 (7). O
n—oo

The following example shows that the lower estimate in Lemma 3.4 can be
sharp.

Example 3.5. The sequential Volterra operator v : £ — ¢ is defined by

v(z) = ( > xk> for any x = (z)x € ¢*. We have v = %
k=0 /mn

Proof. We consider (e, ), the canonical basis of ! and for n € N we denote by
fn = v(ey). For a given n € N, we have f, = (fnx)r € v(Be), where f, =0
itk <mnand fr,, =1if & > n. Since (f,)n is 1-separated in ¢, Lemma 3.4
gives the lower bound. For the upper bound, we consider the rank-one operator
K : 0" — ¢, defined by K = %][ ® Tr, where 1T is the constant sequence equal to
1 and Tr € (£')* is the trace functional. For any x € ¢!, we have

—+oo

k=0

k=0

+oo

n
D wn= ) m
k=0

k=n+1

e

<
- 2

(0= ) (@)l = sup

1
= —su
g 5P

Since K is compact, we get that [|[v. < [[v—K]|| < i. This finishes the proof. [

Definition 3.6. Let X be a Banach space. We say that P : X — Ry is a
subnorm on X if P satisfies

(1) Va,y € X, P(x +y) < P(x) + P(y) (triangle inequality) ;
(i1) Vo € X, P(z) < |lal|.

11



Lemma 3.7. Let « € RT. Let X,Y be two Banach spaces, and T : X — Y a
linear operator. Let (Py)ren be a family of subnorms on'Y. Assume that:

(i) For any g €Y, Iirellprk(g) =0.

(ii) There exists a sequence (hy), € Bx such that

vk € N, liminf Py (T (hy)) > .

n—-+oo

Then ||T||e > a.

Proof. Let S : X — Y be a compact operator, and £ > 0. From the defnition
of S, there exists an extraction (n;); in N such that S(h,;) — g € Y. As
infren Pi(g) = 0, we set kg € N such that Py, (g) < e. Now, we set jo € Nin a
way that we have simultaneously ||S(hy;) —g|| < € and Py, (T(hy,)) > a —¢ for
any j > jo. For j = jo, we have
IT|le = || = S|l = 1T (hn;) = S(hn,)|

2 [T (hny) = gll = [[S(hn,;) — gl

2 Py (T(hn;) — g) = [1S(hn;) — gl

> Pko(T(h’nj>) - Pko(g> — €

> o — 3e.

As this holds for all € > 0, we thus get that ||T']|e > «. O

In the following, we present a variant of the preceding lemma (it is actually a
direct consequence).

Lemma 3.8. Let o € RY. Let X,Y be two Banach spaces, and T : X — Y
be a linear operator. Let (Py)ren be a family of subnorms on'Y. Assume that:

(i) For any g €Y, lim Pi(g) =0.
k——+oco

(ii) There exists a sequence (hy)n € Bx such that

Vk € N, lim sup Py (T'(hy,)) > .

n—-+o0o

Then ||T||e > a.

Proof. By hypothesis, for every k > 1, there exists an extraction 6 : N — N
such that for any n € N such that n > k,

—_

Pi(T (hoy(n))) = = 7

o

By induction, we can also assume that (6x(k))y is increasing. Now consider the
subnorms Py = sup,,>; Pm and the sequence hl, = (hgn(n)) in the unit ball of

X. On the one hand, we have that inf Py (g) = limsup Py (g) = 0 for any g. On
the other hand, we write for any k

liminf Py(T(hy)) > liminf P,(T(K,)) > o

n—-+oo n—-+o0o

Finally, Lemma 3.7 gives the conclusion. O
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The following corollary will be particularly efficient when Y is an LP space.

Corollary 3.9. Let (Q,u) be a measure space, X be a Banach space and T :
X — LP(Q,u) be a linear operator. Assume that there exist a decreasing
sequence of measurable subsets (Ag)r of Q, a sequence (hy), in Bx, and a
number o > 0 such that:

(i) The sequence of Borel sets (Ay) satisfies p (ﬂ Ak> =0.
k

(i) For any k € N, we have lim sup (/ |T(hn)|pdu)5 > a.
Ay

n——+oo
Then ||T|e > «.

Proof. According to the monotone convergence theorem, the sequence of sub-
norms Py : LP(Q, u) — Ry defined by Pr(f) := || f||zr(a,,u), converges point-
wise to 0 on LP(u). Then Lemma 3.8 gives the result. O

Definition 3.10. Let (E,d), (E’,d') be two metric spaces, and f : E — F’
be a function. For & € R™ and a € E, we say that f has a jump at the point a
with height at least « if

Vr >0, 6(f (B(a,7))) > a
where 6(A) denotes the diameter of A C E'.

The following result can be found in [AHLM]. Here we show that it is a partic-
ular case of Lemma 3.7.

Corollary 3.11. Let X be a Banach space, K be a metric compact space, and
T:X — C(K) be an operator. Assume that there exist a sequence (hyp)n in
Bx, an element a € K and a function g : K — C such that:

(i) (T(hy))n converges pointwise to g.
(i) g has a jump at the point a with height 2c.

Then ||T||e > a.
Proof. We apply Lemma 3.7 for the sequence of subnorms (Py); on C defined
by
1 1
A =35 (1 (B0 p)).
One can easily check that the assumptions of the lemma are satisfied. O

Corollary 3.12. Let T : E — ¢ be a linear operator, and o € Rt. Assume
that there is a sequence (fn)n = ((fn,j)jen), i T(Bg), such that for all k € N,
limsupd ({fn,;,7 > k}) > 2a. Then ||T||c > a.

n—oo

Proof. We apply Lemma 3.8 for the sequence of subnorms (Py); on ¢ defined
by

Pi((xn)n) = %5 {zi:i>k}).

We can also use Corollary 3.11, by seeing ¢ as a C(K)-space where K = N U
{o0}. O
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The following lemma is a natural generalisation of [CFT, Lemma 3.4] for all
p € [1,+00), and the proof can be easily adapted. However, we can also see this
result as a consequence of Lemma 3.7.

Lemma 3.13. Let (Q, ) be a measure space, X be a Banach space and T : X —
LP(u) be a bounded operator. For a decreasing sequence of measurable subset
A, C Q satisfying (), An) = 0, the sequence (Ry,)n of projection operators is

defined by
po ) = LP(An,p)
" fo= [,

If for any n € N, the operator T — R, T is compact, then the essential norm of
T is given by
7]l = tim_||RT].

Proof. Since for any z € X, (||R,T(x)||)» is a decreasing sequence, we get that
(|RnT||)n converges to a number « € Ry when n — +oo. By the compactness
of (T — R,T), we clearly have |T|. < ||R,T|| for any n and hence | Tl < «a.

For the lower bound, we fix a sequence h,, € Bx which satisfies

1
HRnT(hn)Hp 2 HRnTH - ﬁ

For k < n, we have ||RxT'(hy)llp = [|T(hn)llzeap,p) = 1R (hy)|lp. Hence we
apply Corollary 3.9 to the sequences (Ax)x and (hy), to get ||T||e > a. O

The following proposition shows that for some classes of operators, the essential
norm depends only on the range of the unit ball.

Proposition 3.14. Let X,Y be two Banach spaces such that'Y has a Schauder
basis (en)n. We consider the natural projections Py :' Y — span{eg;0 < k < N}
defined by Py (3o Tker) = Zf@v:o Trer, and Ry = I — Py. Assume that
|RN|| < 1, for any N € N. Then, for two bounded operators T,T' : X — Y
with T(Bx) = T'(Bx), we have

IT)le = [T = Jim_[IRNT].

Proof. Since PyT has finite rank, it is compact for each N and we clearly have
IT)le < |IT'— PnT|| = |RnT|| for all N. Hence ||T|| < Il\i[minf IRNT]. To get
— o0

the lower estimate, we let € > 0 and S : X — Y to be a compact operator. We
take a sequence (zy)ny C X such that [|zy| =1 and ||[RyTzn| > |RNT|| — €.
The sequence (Sxy)n contains a convergent subsequence, say Szy, — y € Y.
We have

(T = ), | = [ Tan, -yl - Sax, — vl

whence,
limsup [[(T" — S)zn;, || > limsup [Tz, —y|-
J J

Since y € Y, there exists a positive integer ng such that ||[Ryy| < e for all
N > ng. Then, if N; > ng, we have

[Tzn; =yl = (B, (Ten; = y)l| = | By, Ten, || = = [[B, T| = 2e.

14



It follows that
|7 — S| > limsup [|[RNT|| — 2e.
N—o00

As this is true for any compact S, we get

I, > timsup [ RnT| — 2=.
N—o0

This yields to the desired inequality as € is chosen arbitrary. O

The following result is an analogue estimate of the previous results that gives a
lower bound of the distance between an operator T' with values in L () to the
space of weakly compact operators.

Proposition 3.15. Let (0, 1) be a measure space, X be a Banach space and
T : X — LYQ,u) be a linear operator. Assume that there exist a number
a >0, a sequence (hy)y in the unit ball of X and a sequence of measurable sets
(An)n in Q with:

(i) u(Ar) — 0 when k — +oo.

(i) For any k € N, limsup (/A |T(hn)\du> > a.
k

n—-+4+oo
Then, we have ||T||eo > o

Proof. Following the ideas of the proof of Lemma 3.8, we may assume, without
loss of generality, that for any k € N, lim+inf (/ \T(hn)|d,u) >a. Let S: X —
n—-+0oo Ak'

LY(, 1) be a weakly compact operator. Since the set H = {S(hy,),n € N} is
bounded and relatively weakly compact, then it is uniformly integrable [Wo,
p.137]. That means that for any € > 0, there exists d. > 0 such that

u(B) <. = [ [Shuldn <z, vneN.
B
But, for any € > 0 there exists k such that u(Ax) < d.. Therefore we compute
1T =S|I = (T = S)(hn)ll L1 ()
2/ Ty, — Shy|dy
Ak

> [ iThaldi— [ ISl
Ak Ak

> o —c¢.

Finally, we deduce || T||e..» > « which is the desired result. O

4 Essential norm of some Cesaro operators

In this section, we will compute the essential norm the Cesaro operator (discrete
and continuous) defined between different Banach spaces.
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4.1 Cesaro operators on Lebesgue spaces

In the following, we shall compute the essential norm of the continuous Cesaro
operator I', : LP — LP and of the discrete Cesaro operator vy, : £ — (P for
p € (1,+00]. We shall distinguish the case p finite and p = +oc0. Of course, the
key information in the two following theorems concerns the essential norm. The
value of the operator norm of the continuous and discrete Cesaro operators is a
well known fact.

Theorem 4.1. Let p € (1,+00) and T, : LP — LP be the continuous Cesaro
operator. Then,

ITplle = Tl = 2,

where p' = z%' In particular, we have a,(T',) =p’ for any n € N.

Proof. Using the Hardy inequality (see [HLP, Th.327 p.240]), we have the upper
bound

ITplle < T, <p .
To prove the lower bound, we apply Corollary 3.9 to any sequence of subsets
Ay = 10,8;] (where 0) is a decreasing sequence converging to 0) and to the

sequence (hy), defined by h,(z) = (pen)%z_%“" € Brr where €, — 0 as
n — 00. By a straightforward computation, we have for any integer k € N,

Ok 1 x ) N p (6 )psn
Tp(ho)|Y, :/ (/ DER pt_p+5”dt) de = —F
Totdlay = [ (5 [ o) :

» +en)?

Therefore for any fixed k, we get linl)inf ITp(hn)llr(a,y = p'- This finishes the
proof. O

Theorem 4.2. Let p € (1,400), and 7, : €7 — P be the discrete Cesaro
operator. Then we have

”’Yp”e = ||'Yp|| :p/,

where p’ = 1%~ In particular, we have a,(y,) =p’ for any n € N.

Proof. Using the Hardy inequality (see [HLP, Th. 326 p 239]), we have the
upper estimate

Ille < 1l < 9"

Now we prove the lower estimate. For ¢ > 0 and N € N, we consider the
sequence aV) = (a%N))n € (P with

1
c)p N€
CLgLN) — (p )l+7s ]I[N,+Oo)(n), n € N.
ne
The norm of ™) is estimated as:

[ee]

1 < 1
(N yp — pe § : - pe _
a2y = pel < nIFPE Nodtoo pelN /N pltpe de=1.
ne
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By a simple computation, we have

0 ifn< N
1 n
(Wp(a(N)))n =< (peNPe)» 1

n+l ~ ELste

ifn>N.
Using the inequality between the Riemann series and the integral, we get
b b+1 1-8 1-B8
1 1 b+1 —
S Lo [ Ly b et (3)
P kP o P8 1-p

for any integer numbers a,b and any real § # 1. We estimate the norm of
Yp(a™) for e € (0,1/p) as

= peNPe - 1 P
[yp(@a™)]2 = Z;Vm (1;\7 W)
> +§ peNPe ((n—#l)r}/_E—Npl’_E)p
= (n+1)p €
—Z peNPe (p')P <1_< N )Q%)p
(n+1)Hre (1 —ple)p n+1

+

S mr)iE A —pep - P\ntl
@)y (& peN peN”aJ“_
_(17p/€)p ZN( 1+p5 Z 1+p8+?—8 :

Comparing again with an integral (like in (3)), the last estimate reduces to

pe 2 pet oy —e
Iyl > 2 Noyo_re (A .
b P= (1—pep \\N+1 pe+ 5 —e \N+1

Letting N — oo and as ¢ — 0, we get lim [ (a™)||, > p’. Now we apply

Corollary 3.9 to the sets A, = NN [k, +oo) and to the sequence (hy) = (a™).
Indeed, we clearly have that (| Ay = (). Moreover, for a fixed k € N, we have

(@™ len ) = I (@)l

when N > k because the support of v, (a(™)) is included in NN [N, +00). Hence,
the essential norm of +, is equal to p’. O

Theorem 4.3. Let ', : L™ — L™ be the Cesaro function operator, we then
have

||F00||e,w = [[Fsolle = [ITsol| = 1.
In particular, we get that a,(I'ss) =1 for any n € N.
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Proof. First it is clear that ||I's|le,w < [[Toclle < [Tl = 1. To prove the lower
bound, we will fix e € (0,1) and will define a sequence of functions (h,,), in the
unit ball of L, such that any block-subsequence of T'o(hy,) will be (2 — 2¢)-
separated in L>°. Therefore Lemma 3.4 (i¢) will yield |T'oolle,w > 1 — €, which

will give the result. For this, we consider the sequence (h,), € Bp~ by the

following
-1 ifx<em
() = { 1 ifx>em.
x

The sequence Hy, := ' (hy,) satisfies H, = —1 on [0,e"] and H,(z) =

if > &™. Let (ﬁ]m)m be a block-subsequence of (H,,), defined by H,, =
Z ¢;H; (see Definition 3.1). For two integers k,{ with [ > k, we have
j61771

T — 2"

l
Hl(ak)zl—Qj—k >1 - %.

For any two integers numbers m, n with m < n, we set k = max I,,, and compute
”ﬁn - fImHoo > |ﬁn(€k) - ﬁm(gk”

— ’ Z e Hy(e%) — Z chj(sk)‘

lel, J€Lm
> (1-—2¢) Z ¢ — Z ci(—1)
lely, JE€Im
=2 —2e.
Thus, we get that |I'ec|le,wy > 1 and we finish the proof. O

Theorem 4.4. Let vy, : £° — £ be the Cesaro sequence operator. We have

Voo lle,w = 17oolle = 17ooll = 1.
In particular we have a, (Vo) = 1 for any n € N.

Proof. The upper estimate is clear, as ||Yoo|le,w < [|Yoolle < [|7ooll = 1. For the
lower bound, we follow the same idea as in the proof of Theorem 4.3. We fix

¢ € (0,1) and we let r be a natural number with r > 1/e > 1. For n € N, we

consider the sequence a(™ € ¢>° defined by a(™ = (a,(fb))keN*, where a,(ﬂn) =-1

if & < r", and agl) = 1if & > ™. We denote by A™ := v, (a™) with
A = (Agn))ieN*. Then, we get

(n) _ 471 ife <™
A; {—2 if i > 7"

Now, we consider a block-subsequence of A say (g(m))m, as in Definition 3.1

by
Alm) _ Z ch(j).
J€Im

By the choice of (a,)n, we have for two integers j, k with j < k, that

. j
AY =125 >1-2
T
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Let m,n be two integers with m < n, and let ¥ = min I,,. We compute
A — Ao > AT — A7)

— ‘ Z chq(ﬁj,;) — Z clA£l2

J€Lm lel,

>(1-2) Y ¢— > al-1)

JE€EIm lel,

=2—2¢.
Finally, by applying Lemma 3.4 (i7) we deduce ||Yoolle.w > 1. O

The operators I',, are not compact, but the situation is different when we restrict
them to a Miintz space M%. This is due to the geometric nature of these spaces.
We first state the following lemma.

Lemma 4.5. Let p,q € [1,400] satisfy p > q. Then the natural inclusion
ipq: My — M{ is a compact operator.

Proof. The boundedness is clear. To check the compacity, we consider a se-
quence (f,)y, in the unit ball of MY. From [AL, Cor. 2.5], there exist a function
g € MY and an extraction (ny )y such that f,, converges to g uniformly on every
compact subset of [0,1). For any § € (0, 1), we compute

1-06 1
e =olt= [ U0 =gPde+ [ 11,0 =01

1 1_4a
pos1—8) + [ — gllE 8" 7.

< ”fmc -9

In the second term, we use the Holder inequality. Clearly, the first term qtends
to 0 by the uniform convergence, and the second one is less than 278" 7. As
1-—- % > 0, we get that f,, converges to g in M{, and thus i, , is compact. [

Next, we obtain the following property for the restrictions of the Cesaro opera-
tor.

Proposition 4.6. Let p € [1,+00], MY be a Mintz space and F;} : MY —
MY, f— T(f) be the restriction of the Cesaro operator. Then I‘;} is compact.

Proof. According to [AHLM, Prop. 4.2], the operator T'y : M} — Mg, f
I'(f) is bounded (but not compact). Then we obtain the factorization

FA
MP—L s M

Zp,ll Tloom

1 e’}
My —— M.
Ca

Therefore, Lemma 4.5 yields to the compacity of F]’,}. O
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4.2 Cesaro operators on Cesaro spaces

In this section, we study the Cesaro operators defined on the Cesaro spaces to
the corresponding Lebesgue spaces. We shall also consider the restriction of
those operators to the Miintz subspaces (see Definition 2.5). We note that for
p € [1,+00] (resp. for p € (1,+00]) the Cesaro operators I'c(,) (resp. 7o)
are naturally well defined and bounded, with norm 1. Moreover, they map
isometrically the set of positive functions (resp. sequences) to themselves. It is
shown in [CR] that these operators are not compact and we shall show below
that they are even far from being compact: their distance to compact operators
is maximal.

Theorem 4.7. For any p € (1,4+00), we have
(i) ITe@lle = el = 1.
(#5) [Vewlle = el = 1.
(iir) [Tewllew = Te@lle = Tewll = 1.
(i) ITc(o0)lleqw = ITc(o0)lle = ITeoo) | = 1.
(V) Ve(oo) lesw = [1Ve(oo)lle = 1Ve(oo) |l = 1.
In particular, the approrimation numbers of all these operators, are equal to 1.

Proof. Since [|[T¢plle < [Te@)ll < 1, all we need to check is that the essential
norm is bigger than 1. Let p € (1,+00), then we have I') = I'¢(,) © J,,, where
Jp : LP — Ces,, is the formal inclusion of L? in Ces),. It is easy to see that this
factorization implies

ITylle < Tl

Using the Hardy inequality ([HLP, Th. 327]) and Theorem 4.1, we obtain the
estimate p’ < p'||T¢(pyle, and thus we get (i). Following the same steps, we can
treat the sequential case by applying Theorem 4.2 and we obtain (ii). For the
point (iii), we clearly have

ITewllew < ITe@lle < [Tell < 1.

To prove the lower estimate for ||I'c(1)l|e,w, We apply Proposition 3.15 for the
sets A, = [1 —1/n, 1] and for the sequence of normalized functions (h,,) € Ces;
defined by hy,(z) = (A, +1)%22*». The Lebesgue measure of the sets A,, decreases
to 0 when n — +o00, and for any fixed k € N we have

1 1 [* 1\ Antl
Ty (hn 1k=/ f/ Ao + D2 dt Jde =1 — (1 — — :
ITo ()l an) w( [ On 1) (1-7)

x
It then tends to 1 when n — o0, which gives |[I'c(1)lle,w > 1 as desired. To
prove (iv), we have as usual [|[T'c (o) [|le,w < [Te(oo)lle < [Te(ooy |l <1, and as in
the proof of (i), Theorem 4.3 gives
||FC(oo)||e,w||J00|| > ”FC(oo) © Joone,w = ||F00||e,w =1L

In the same way, we treat the sequential case (v) with Theorem 4.4. O
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Now we consider the restrictions of Cesaro-type operators to Miintz Cesaro
spaces (see Definition 2.5). Let A = (\,,)n>0 be an increasing sequence satisfying
the Miintz and gap-conditions. For p € [1, +00], we define the following operator

MO P
ra A A
e { foo— T

Theorem 4.8. Let p € [1,+00). Then we have

(0) P& lle =

. 1
(i) I lle = 5
Proof. First, we prove (7). The operator FC( ) is clearly well defined and bounded.

We have ||T'A (p)||e < ||TA (p)|| < [Te@ll < 1. Let us denote x, : MAebp — LP,

f = T(f). We factorize x, through MY as follows
~ A
Xp = Jp ° Ty
where j, : MY — L? is the inclusion of MY in LP. Hence, we obtain

Ixplle < ”F (p)” Al < ”F (p)He’

and we just need to check that ||xp|le > 1. The operator Y, is valued in an L?
space and therefore we can apply Corollary 3.9 with Q = [0, 1], A, = [1—1/k, 1],
a =1 and with the sequence of functions h,, : t = (A, + 1)(pA\, + 1)%75)‘". We
have for any fixed k € N,

ol sian = [ @t (L [ O 1) ac
XP Lp Ak 17% PAn z o n

.

We obtain || T'A (p)||e > |Ixplle > 1 and the proof of () is complete. Now we treat
the case “p = +00”. For the upper estimate of the essential norm, we factorize
I‘/C\(OO) through M} as follows

A

Ceso
Y e G S V7.

e,

where Jy : MEGS‘” — M} is the restriction of the inclusion of Cess, in L' (see
Lemma 2.1) and T'y : M} — MZ® is the Cesaro operator between Miintz spaces.
By [AHLM, Thm. 4.3], we have that ||T's||. = 1/2, and thus we obtain

1
ITE o) lle < Iall-ITalle < 5-

[\]
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To get the lower estimate, we consider a subsequence (v5)n
MECS“ the sequence of normalized functions

22t — +oo and denote (fn)n €
deﬁned by fn(z) =

IT(fn) = T(fm)lloo = [l27"

7:6'7711”00

. (’yn )’Yn/('Ym_'Yn)

Tm

C A satisfying

(yn + 1)z, For m > n, we have

( Yn )’Ym/(’Y'm —Vn)
Tm

B (h)%/(%rwn) (1 B ﬁ)
Ym Ym /'

As this term tends to 1 when n, m — 400 with n < m, we get (i7) from Lemma

3.4.

. NI L TA
The previous result implies that the operators I'g,

O

p) are never compact. Now we

focus on the particular case where A is lacunary to obtain more specific results.

Recall that a sequence (), is called lacunary if it satisfies inf,, >0

Theorem 4.9. Let p € [1,+00). If A = (A
A

the operator I‘C(p)

constant Cy,Cy € RY

(S ) <[

> 1.

)\n+1
An

n)n 18 a lacunary sequence, then
s M, < MY is an isomorphism. Actually, there exist two
such that for any b = (by), € ¢y we have

C(p) = Cz(zn: f}:ﬂz);'

Proof. Using the Gurariy-Macaev theorem in L? (see [GL, Th. 9.3.3]), there

exist two positive numbers d; and dy such that

n (25

for any function g € M(A) with the form g(¢ )
function f € M(A) defined by f(¢)

1
IDAHIE < 1£12,) < /

’H )\ +1

p N [bnl”
< dzZWv
n n

)" < gl < (Z |an|p)%

>, ant*. Therefore, for any
=", bt we get from the one hand

(: /m Z baltt) da

p

An

p

since Y, |b,[t* € M(A). On the other hand, as T'(f) € M(A) we write

b P
Pl = || 3 g™

p

dl p |bn|p
= (5) Zn: AP

Hence, we find the claimed estimates. In particular, the operator Fg(p) is one-

to-one, with a closed range. Since I‘C( y(M(A)) = M(A), it has a dense range

in M} and therefore I‘C(p) is an isomorphism.
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Remark 4.10. Note that the Gurariy-Macaev theorem in L' and Remark 2.6
imply that MSCS‘” is isomorphic to ¢! (in the case where A is lacunary). Hence,

we get |
>‘n ~ bin
H En:b"t Clo0) zn: A

where the underlying constants depend only on A. Moreover, even in the la-
cunary case, I' cannot be an isomorphism between Mfes‘” and Mg° since the
spaces are not isomorphic. A natural question that arises in this context: Is
I'" an isomorphism between MSES” and M} for any Miintz sequence A and any
p € [1,400)?

5 Multiplication operators on Cesaro function
spaces

In this section, we study the compactness and compute the essential norm of
the multiplication operator Ty, : f — f1 on the Cesaro function spaces, for a
measurable bounded function v on [0, 1]. The starting point in this part is the
following result:

Proposition 5.1. [AMR, Theorem 2.1] Let p € [1,+00] and assume that ¢ is
a measurable function on [0,1]. Then the following are equivalent:

(i) The multiplication operator Ty : Ces, — Ces,, [ — [ is well defined.
(ii) The operator Ty, is bounded.

(i1i) The function i is essentially bounded on [0, 1].

Moreover, in this case we have ||Ty|| = ||9||oo-

Formally, this result was proved when p is finite. Nevertheless, the proof can
be easily adapted for p = +00. We can use the method with our framework to
compute the essential norm of the multiplication operators.

Theorem 5.2. Let ¢ € L*°([0,1]) and Ty, : Ces,([0,1]) — Ces,([0,1]); f — fo
be the multiplication operator. Then we have

1 Tylle = lI#lloo-

Proof. As usual, we have || Ty |l < ||Ty| = [|¢| s by Proposition 5.1, and hence
we just need to check that ||Tylle > ||¢|loo- For € > 0, we define the set

Ae ={t € (0,1}, [¥(B)] = [[¥]lc — €}

Let p be the Lebesgue measure. As pi(A.) > 0, then at least one of the two sets

[0,2] N A: or [3,1] N A. has a striclty positive measure. Assume that it is the

first one, and put
B =inf{z € [0,1/2], u([z,1/2] N A.) = 0}.
The number j satisfies 5 € (0,1). In the other case, we define

B = sup{x € [1/2,1], u([1/2,2] N A:) = 0},
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and (' is also in (0,1). Now we consider an increasing sequence (a,) which
tends to 8 when n — +oo, and define the sets J, = [an, any1) N A. for any
integer n € N. From the definition of 3, there exist infinitely many sets J,, with
a positive Lebesgue measure. Up to an extraction, we can assume that they all

I
satisfy p(J,) > 0. We then set the normalized functions f,, = ﬁ € Cesp.
In C(p)
Assume first that p is finite. For n < m, we have
(1) 7, (1) P
T, n) — T m P = / / ‘ Im ‘dt dzx

>ty [ (3 (“J(>+ﬁ;[r;(t>)dt)pdx

m

= (I1¢lloo — sy(ﬂ(Jn) N u(Jm>> do

(L5 (R A 2

The lower bound follows from the fact .J,, C A. and from the disjointness of the
intervals J,,, and the equality holds because 8 > sup J,, for any n. On the other
hand, we have

L da
g P’

B 1 p
P — _ P
1L, 1[G ) = / (mu([o, )N Jn)) d + p(Jn)

and since a, — 8 < 1, we easily obtain

1 _1
lim I = (/ di) "
n—4oo ||][Jn||C(p) 8 xP

Hence there exists ng € N such that for any m > n > ng we have

||T1/1(fn) - Tﬂ/)(fm)HC(p) >(2- 5)(||¢||oo - 5)~

This holds for any ¢ > 0 and Lemma 3.4 gives ||Ty|le > ||%|loo- This concludes
the proof when p is finite. Assume now that p = +0o and fix again two integers
n,m with n < m,
(t) t
Dl ‘ L, (t) ‘ dt

T fn T fm o) T Sup 7/
1Ty (fn) = Ty (fa)llo(oo) = ve(01] T H]IJ || 1L, |
I, () 1, (t)
> (||Y]|loo —€) sup — / n 4 dm dt.
(It )xE(O,l)I 0 (”][Jn” ”][Jm”)

Here, we use the fact that the intervals J,, are disjoints and included in A.. For
any k € N, the set Jj, satisfies inf(J;) = ag, and this gives

1
|| ][Jk ”C(oo) < ;kM(Jk)

Thus, we find
1 amtt Ay (t) Ay (1)
T, n - T m [e%e) Z o TE ] * r “
I ) = ol 2 ilke =20 [ (P + ey
1 w(Jn) | p(Im)
= /ll) o0 — &
(Il )amH(H]IJnH IIIIJmH)
am+an
2 ([$lloo — &)=
m+1
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Asm,n — +oo with n < m, we have a,, @, @1 — 5 > 0. Hence, there exists
no € N such that the sequence (T'(f1))n>n, 15 (2 —€)(||¥]|cc — €)-separated, and
we deduce the lower estimate by applying Lemma 3.4. O

Now we are interested in the restriction of the multiplication operators to the
Miintz subspaces of Cesy.

Lemma 5.3. Let p € [1,400], A = (An)n be a sequence satisfying the Mintz
and gap conditions, ¥ € L*> be a function such that lim1 19T 1)llec = 0. Then
a—

the restriction of the multiplication operator to the Miintz-Cesaro space Ty 4 :
M/(\Jesz’ — Ces,, defined by Ty (f) = f1 is compact.

Proof. Let (f,)n be a sequence in the unit ball of MCEEP and € > 0. Since v is
continuous and (1) = 0, there exists 6 € (0, 1) such that |(t)| < e for almost
every t € [1 — 4,1]. By Corollary 2.9, there ex1st a function f in the unit ball
of Ces, and a subsequence (fy, ), that converges uniformly to f on [0,1 — d].
Assume fisrst that p = 400, then we have

IT(fos) = oDl = s (5 [ 1520 - s oo
:max{z;;% o[ 1t - oL ive)
(5 [ 1w - s wa) }
< Wllell =l Wlosy s (5 [ 10) - 50011

< lloo|[ fr = Fllig sy + €l e = Flloooy

Since (fy, ) converges uniformly to f on the compact set [0, 1 — d] and both f,,
and f have norm less than 1, we obtain

T Tol(fa) = ol ooy < 26

and so Ty, A is a compact operator on Mf(oo). Assume now that p is finite, we
have

o) = Tl = [ (3 [ V0 = s at)
1-6 1 fe
S/0 (5/0 | fr, _f||1/’(t)|dt) dx
! 1=9 T p
+/1_5 <115/0 | frus —f|.|w(t)|dt+% /1_6|fnk —f|dt> da,

as [(t)] < e when t > 1 — 4. On the other hand, for any < 1 — 4, we have

1 T
o [ 15 = PO < Wl o = £l 1y
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Using the estimate (A + B)P < 2P(AP + BP) for A, B > 0, we find

P 2P§
o) = Tl < e = Tl (14 1 g5)

1y ’
D P 4 B
e /175 <33 /175|f"k f|dt) dx
S Cloloe: [ e = f||[0,1—6] + 2PFicp

Since | fn, — flljo,1—s) = 0 when k — 400, we deduce that Ty (fn,) — Ty (f) in
Ces, when k£ — 400 and hence T}, A is compact on Mf(p). O

Note that the assumption on ¢ in Theorem 5.3 is satisfied if v is continuous at
the point 1 and satisfies ¢(1) =0

Theorem 5.4. Let A be an increasing sequence satisfying the Miintz and gap-
conditions, p € [1,400], ¥ € L and Ty A : Mf(p) — Cesy be the multiplication
operator defined in Lemma 5.3. If 1 is continuous at the point 1, then we have

1Typalle = 14 (1)]-
Proof. For any n € N, we let 1, = () f(t) where

1 ifte|0,1
f"(t):{ n(l—t) ﬁteh—f 1}

is a continuous function with f,,(1) = 0. Since ¥, (1) = 0, we know from Lemma
5.3 that T}, A is compact for any n. Hence,

1Ty alle < 1Tw.a = T all <Ml = Pnlloe < [Pllp-r4y 2 (D],

as 1 is continuous at 1. To get the lower estimate, we will apply Lemma 3.4. For
this, we let € > 0. Since v is continuous at 1, there exists é € (0,1) such that for
any t € [1 —0,1], we have [1(t)] > (1 —¢)|¢p(1)]. Assume first that p = +oo and

consider a subsequence (7y,), C A which satisfies lirf ’YTYA = +00. We define
n—4oco In

the norm-one functions (¢y), € M{%* by ¢, () = (7, +1)27. Applying [A2,
Lemma 3.1] for the polynomials p(x) = g(z) = z, there exists ng € N such that

1
loull + lomlh < (1+¢) / len®) = et

for any m > n > ng. One can also check this estimate by a straightforward
computation of ||¢, — @1, using the assumption % — +o0 when n — +o0.
We get '

175 (on) = Tuliom)lloroer = IT (1(en = om)D) 1
= s 2 / (on(t) ~ om0
> [ lenl) e
> 2(1)
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By Lemma 3.4, we find [Ty alle > [¢(1)[{= for any € > 0, and therefore we
deduce [|Ty Al = [1(1)| in this case. Assume now that p is finite. We will follow
the method of the proof of [GL2]. Let v = (v, )nen be a subsequence of A which
satisfies

Vn € Na Tn+1 +1 > (777, + 1)6

We set a sequence of disjoints intervals J = (ag, fr) with

1
ap=exp(————) and fy=exp(— ——=).
( (’71@4—1)%) ( (’Yk+1)3)
The numbers oy, By satisfy for any k € N; oy < 8k < agq1 < Bry1 < --- . For

k € N, we define i (t) = (yn + 1)(pyn + 1)1/Pt7. The sequence (@), € Mf(p)
is normalized, and each function ¢ is concentrated on the interval Ji in the
following sense: if a < b < g, we have

S

b
/ pr(t)dt = (7 — ) (e + 1)
<ol (py + )7
< exp ( — (A + 1)%)(p)\k + 1)% — 0,

when k£ — +o0o. On the other hand, if 8, < ¢ < d, we write

S

d
/ pr(t)dt = (@ — ) (e + 1)

< (1= ome +1)7
(s, + )7
(vk +1)2

when k — +o00. Here, we use the estimate 1 —exp(—u) < w when u € (0,1). We
also have

IA

— 0,

pr(on) = (ke + 17 (g + D exp (= ——2) =0,
(v +1)2
when k — 400, and
1
+1)» +1
(1 _Bk)@k(]-) < (p’yk ) (’Ykr ) N 07

(e +1)°

when k — 400. We define 5 to be the maximum between these four quantities.
Clearly ()i tends to 0 when k — 4o00. Therefore, for any k € N, we compute

B

1= H%Hg(p) = /Oak (F(tpk)(w))pdrﬂ +/a xlp(/oak o (t)dt + /O: @k(t)dt>pdx

+/B (T(or)(z)) " dx

k

Br q @ P
§a§+/ E(a;ﬁ—/ gak(t)dt) dx + &

k k

N/jk ;p(/a er(t)it) dz,

k k
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when k£ — +o0. Now we fix ng such that a,, > 1 —¢. Then for any m > n > ng
we have

IT(on) = Tolom gy = [ Tton — oml) e
N e M AT
> |w(1><1—a>< / B = pult)dt 1) da
[ ey

~2[p(M)[(1 —e),

when n,m — 400 with n < m, and we deduce the lower estimate for ||Ti A |le-
O
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