MATH602 - Formulaire d'échantillonage

1) Convergence des variables aléatoires, et propriété des échantillons

Définition 1. Soient $(X_n)_n$ et X des v.a. définies sur un même espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$.

- 1. $X_n \to X$ presque partout si pour presque tout $x \in \Omega$, $X_n(x) \to X(x)$.
- 2. $X_n \to X$ en probabilité si pour tout $\varepsilon > 0$, $P(|X_n X| \ge \varepsilon) \to 0$.

Loi forte des grands nombres Soit $(X_n)_n$ une suite de v.a. sur Ω . On suppose :

- 1. Les (X_i) sont indépendantes (ind.)
- 2. Les (X_i) ont la même loi (id. dist.)
- 3. Les (X_i) sont intégrables et $E(X_1) = \mu$

Alors $\frac{1}{n} \sum_{i=1}^{n} X_i \underset{n \to +\infty}{\longrightarrow} \mu$ presque partout sur Ω .

Définition 2. Soient (X_n) et X des v.a. $X_n \to X$ en loi si l'une de ces propriétés est satisfaite :

- 1. Pour presque tout $x \in \mathbb{R}$, $F_{X_n}(x) \underset{n \to +\infty}{\longrightarrow} F_X(x)$.
- 2. Pour toute fonction continue bornée f, $E(f(X_n)) \underset{n \to +\infty}{\longrightarrow} E(f(X))$.
- 3. Pour tout $t \in \mathbb{R}$, $E(e^{itX_n}) \underset{n \to +\infty}{\longrightarrow} E(e^{itX})$.

Théorème central-limit Soit (X_n) une suite de v.a. et $Z \sim \mathcal{N}(0,1)$. On suppose :

- 1. Les (X_i) sont indépendantes (ind.)
- 2. Les (X_i) ont la même loi (id. dist.)
- 3. Les (X_i) sont de carrés intégrables, et $E(X_1) = \mu$, $Var(X_1) = \sigma^2$.

Alors
$$\frac{1}{\sqrt{n}\sigma} \Big(\sum_{i=1}^n X_i - n\mu \Big) \underset{n \to +\infty}{\longrightarrow} Z$$
 en loi, ou encore $\frac{\sqrt{n}}{\sigma} \Big(\frac{1}{n} \sum_{i=1}^n X_i - \mu \Big) \underset{n \to +\infty}{\longrightarrow} Z$ en loi.

Intervalles de confiance pour X quand μ et σ^2 sont connues Soit X de carré intégrable,

$$P(\mu - R \le X \le \mu + R) \ge 1 - \frac{\sigma^2}{R^2}$$

Intervalles de confiance pour $\frac{1}{n}\sum X_i$ et $\sum X_i$, quand μ et σ^2 sont connues Soit (X_n) une suite de v.a. ind. id. dist. de carré intégrable, et $\alpha \in]0,1[$ un risque. Alors

$$P\left(\mu - \frac{z_{1-\alpha/2} \times \sigma}{\sqrt{n}} \le \frac{1}{n} \sum_{i=1}^{n} X_i \le \mu + \frac{z_{1-\alpha/2} \times \sigma}{\sqrt{n}}\right) = 1 - \alpha,$$

où $\mu = E(X_1)$ et $\sigma^2 = Var(X_1)$, et

$$P(n\mu - z_{1-\alpha/2}\sqrt{n} \times \sigma \le \sum_{i=1}^{n} X_i \le n\mu + z_{1-\alpha/2}\sqrt{n} \times \sigma) = 1 - \alpha.$$

Quantiles remarquables de la loi normale Soient $Z \sim \mathcal{N}(0,1)$ et $\alpha \in]0,1[$ un risque. On définit $z_{1-\alpha/2}$ par $P(Z \in [-z_{1-\alpha/2}, z_{1-\alpha/2}]) = 1 - \alpha$ (la certitude).

	α	1	0,8	0, 5	0,32	0, 2	0, 1	0,05	0,0455	0,01	0,0027	0,001	0,000063
1	$-\alpha$	0	0, 2	0,5	0,68	0,8	0,9	0,95	0,9545	0,99	0,9973	0,999	0,999937
z_1	$-\alpha/2$	0	0, 25	0,67	1	1,28	1,65	1,96	2	2,58	3	3, 29	4

2) Estimation par échantillonage

 $(X_n)_n$: suite de v.a.ind.id.dist, de même loi que $X_\theta \sim \mathcal{L}(\theta)$, où $\mathcal{L}(\theta)$ est une loi et θ est un paramètre inconnu de \mathcal{L} . On suppose aussi que X_θ est de carré intégrable : $E(X_\theta)$ et $Var(X_\theta)$ existent.

Définition 3. Un estimateur T de θ est une suite de fonctions $(T_n)_n$ sur \mathbb{R}^n .

- Pour tout $n \in \mathbb{N}$, $T_n(X_1, \dots, X_n)$ est une variable aléatoire "censée" converger vers θ .
- T est sans biais si $\forall n \in \mathbb{N}, E(T_n(X_1, \dots, X_n)) = \theta$.
- T est asymptotiquement sans biais si $\lim_{n\to+\infty} E(T_n(X_1,\ldots,X_n)) = \theta$.
- T est consistant si $T_n(X_1,\ldots,X_n)$ converge en probabilité vers θ .
- L'erreur quadratique moyenne est la suite $E((T_n(X_1,\ldots,X_n)-\theta)^2)_n$.
- Pour un échantillon $(x_1, \ldots, x_n) \in \mathbb{R}^n$, le nombre $T_n(x_1, \ldots, x_n)$ est une estimation de θ .
- La vraisemblance L d'un échantillon (x_1, \ldots, x_n) , selon la loi parente X_{θ} , est :

$$L(x_1,\ldots,x_n,\theta) = \prod_{k=1}^n P(X_\theta = x_k)$$
 (cas discret) ou $L(x_1,\ldots,x_n,\theta) = \prod_{k=1}^n f_\theta(x_k)$ (cas continu)

Définition 4. Soit (x_1, \ldots, x_n) un échantillon. Les estimateurs classiques :

- Moyenne empirique $\mathcal{M}(x_1,\ldots,x_n)=\frac{1}{n}\sum_{k=1}^n x_k$. estimateur de $E(X_\theta)$.
- Variance empirique $\mathcal{V}(x_1,\ldots,x_n) = \frac{1}{n} \sum_{k=1}^n (x_k \mathcal{M}(x_1,\ldots,x_n))^2$ estimateur de $Var(X_\theta)$.
- Variance sans biais $\mathcal{V}^*(x_1,\ldots,x_n) = \frac{1}{n-1} \sum_{k=1}^n (x_k \mathcal{M}(x_1,\ldots,x_n))^2$ estimateur de $Var(X_\theta)$.
- L'estimateur du maximum de vraisemblance est $\hat{\theta}$ tel que $L(x_1,\ldots,x_n,\hat{\theta})$ est maximale.
- L'estimateur des moments est la solution θ_0 de l'équation : $\mathcal{M}(x_1,\ldots,x_n)=E(X_\theta)$.

Intervalles de confiance pour $E(X_{\theta})$ et $Var(X_{\theta})$, quand \mathcal{M} et \mathcal{V}^* sont connues Soit (X_n) une suite de v.a. ind. id. dist. de lois Gaussiennes $\mathcal{N}(\mu, \sigma^2)$, et $\alpha \in]0,1[$ un risque. Alors

$$P\Big(\mathcal{M} - t_{1-\alpha/2}^{n-1} \frac{\sqrt{\mathcal{V}^*}}{\sqrt{n}} \le \mu \le \mathcal{M} + t_{1-\alpha/2}^{n-1} \frac{\sqrt{\mathcal{V}^*}}{\sqrt{n}}\Big) = 1 - \alpha,$$

et

$$P\Big(\frac{(n-1)\mathcal{V}^*}{k_{1-\alpha/2}^{n-1}} \leq \sigma^2 \leq \frac{(n-1)\mathcal{V}^*}{k_{\alpha/2}^{n-1}}\Big) = 1 - \alpha.$$

Quantiles lois de Student et χ^2 Soient $T \sim St(n-1)$, $K \sim \chi^2(n-1)$ et $\alpha \in]0,1[$ un risque. On définit $t_{1-\alpha/2}^{n-1}$ par $P(T \in [-t_{1-\alpha/2}^{n-1},t_{1-\alpha/2}^{n-1}]) = 1-\alpha$ (quantile d'ordre $1-\alpha/2$ de St(n-1)). On définit $k_{\alpha/2}^{n-1}$ et $k_{1-\alpha/2}^{n-1}$ par $P(K \in [k_{\alpha/2}^{n-1},k_{1-\alpha/2}^{n-1}]) = 1-\alpha$ (quantiles $\alpha/2$ et $1-\alpha/2$ de $\chi^2(n-1)$).

Risque	$\alpha = 0.05$	$\alpha = 0,01$	$\alpha = 0,001$	$\alpha = 0.05$	$\alpha = 0.05$	$\alpha = 0,01$	$\alpha = 0,01$
n	$t_{0,975}^{n-1}$	$t_{0,995}^{n-1}$	$t_{0,9995}^{n-1}$	$k_{0,025}^{n-1}$	$k_{0,975}^{n-1}$	$k_{0,005}^{n-1}$	$k_{0,995}^{n-1}$
2	12,71	63,66	636	0	5,02	0	7,88
3	4,3	9,93	31,6	0,05	7,38	0,01	10, 6
5	2,78	4,6	8,61	0,48	11, 1	0, 21	14,9
8	2,36	3,5	5,41	1,69	16	0,99	20, 3
10	2,26	3, 25	4,78	2,7	19	1,73	23, 6
20	2,09	2,86	3,88	8,8	32,8	6,84	38, 6
30	2,04	2,75	3,66	16	45,7	13, 12	52, 3
50	2,01	2,68	3, 5	32, 4	71,4	28	79, 5
∞	1,96	2,58	3, 29	$n-2\sqrt{n}$	$n+2\sqrt{n}$	$n-2,6\sqrt{n}$	$n+2,6\sqrt{n}$