LACUNARY MUNTZ SPACES:
ISOMORPHISMS AND CARLESON EMBEDDINGS

LOIC GAILLARD AND PASCAL LEFEVRE

ABSTRACT. In this paper we prove that M}z is almost isometric to ¢P in the canonical
way when A is lacunary with a large ratio. On the other hand, our approach can be used
to study also the Carleson measures for Miintz spaces M K when A is lacunary. We give
some necessary and some sufficient conditions ensuring that a Carleson embedding is
bounded or compact. In the hilbertian case, the membership to Schatten classes is also
studied. When A behaves like a geometric sequence the results are sharp, and we get
some characterizations.

1. INTRODUCTION

Let m be the Lebesgue measure on [0, 1]. For p € [1,4+00), LP(m) = LP([0,1],m) (some-
times denoted simply LP when there is no ambiguity) denotes the space of complex-valued
measurable functions on [0, 1], equipped with the norm || f]|, = (fol \f(t)|pdt)%. In the same
way, C = C([0,1]) is the space of continuous functions on [0, 1] equipped with the usual sup-
norm. We shall also consider some positive and finite measures p on [0,1) (see the remark
at the beginning of section 2), and the associated LP(u) space. For a sequence w = (wy,)n
of positive weights, we denote ¢?(w) the Banach space of complex sequences (by,),, equipped
with the norm ||b][sr () = (32, |bn|pwn)% and the vector space cgp consisting on complex
sequences with a finite number of non-zero terms. All along the paper, when p € (1, 4+00),
we denote as usual p’ = p%l its conjugate exponent.

The famous Miintz theorem ([BE, p.172],[GL, p.77]) states that if A = (Ap)nen is an
increasing sequence of non-negative real numbers, then the linear span of the monomials ¢*»
is dense in LP (resp. in C) if and only if ) - /\% = 400 (resp. and A9 = 0). We shall assume
that the Miintz condition ), -, i < +o0 is fulfilled and we define the Miintz space MY

as the closed linear space spanned by the monomials *», where n € N. We shall moreover
assume that A satisfies the gap condition: inf ()\n+1 - )\n) > 0. Under this later assumption
n

Clarkson-Erdés theorem holds [GL, Th.6.2.3]: the functions in M} are the functions f in
L? such that f(x) = Y a2 (pointwise on [0,1)). This gives us a class of Banach spaces
MY C LP of analytic functions on (0, 1).

In full generality, the Miintz spaces are difficult to study, but for some particular se-
quences A, we can find some interesting properties of the spaces MY. Let us mention that
lately these spaces received an increasing attention from the point of view of their geometry
and operators: the monograph of Gurariy-Lusky [GL], and various more or less recent papers
(see for instance [AHLM],[AL],[CFT],[LL],[NT]).

We shall focus on two different questions on the Miintz spaces. The first one is related
to an old result: Gurariy and Macaev proved in [GM] that, in LP, the normalized sequence
((pAn + 1)%t>‘")n is equivalent to the canonical basis of ¢P if and only if A is lacunary (see
Th.2.3 below). More recently, the monograph [GL] introduces the notion of quasi-lacunary
sequence (see definition 2.1 below), and states that M} is still isomorphic to /7 when A is
quasi-lacunary. On the other hand, some recent papers discuss about the Carleson measures
for the Miintz spaces. In [CFT], the authors introduced the class of sublinear measures
on [0,1), and proved that when A is quasi-lacunary, the sublinear measures are Carleson
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embeddings for M}. In [NT], the authors extended this result to the case p = 2 but only
when the sequence A is lacunary.

In this paper, we introduce another method to study the lacunary Mintz spaces: for a
weight w and a measure y on [0, 1), we define T : ¢P(w) — LP(u) by T% ,(b) = >_, by thn
for b = (b,) € £P(w). The operator T’ , depends on w,u,p and A, and when it is bounded
we shall denote by ||T]§“ qu its norm. We shall see that an estimate of HT}{’ qu can be used
to improve the theorem of Gurariy-Macaev, and to generalize former Carleson embedding
results to lacunary Miintz spaces MY for any p > 1.

The paper is organized as follows: in part 2, we specify the missing notation and some
usefull lemmas. The main result gives an upper bound for the approximation numbers of
Ty, (see Prop.2.9). In section 3, we focus on the classical case: we fix the weight w(p) defined

by w,(p) = (pA, + 1)~ and consider T;\”(p) : P(w) — MY defined by T;\U(p)(b) = TK(HP)(b)

with p = m. It is the isomorphism underlying in the Gurariy-Macaev theorem. For p > 1, we

(»)

prove that T,"" is bounded exactly when A is quasi-lacunary. On the other hand, when A is

lacunary with a large ratio, we also get a sharp bound for H (T;;"(p))fl Hp (see Th.3.5 below).
Our approach leads to an asymptotically orthogonal version of Gurariy-Macaev theorem
exactly for the super-lacunary sequences. In section 4, we apply the results of section 2
for a positive and finite measure p on [0,1) with the weights w, = A,!. To treat the
Carleson embedding problem, we shall give an estimate of the approximation numbers of
the embedding operator ) : ML — LP(u). In section 5, we focus on the compactness of i
using the same tools as in section 4. In the case p = 2, this leads to some control of the
Schatten norm of the Carleson embedding and some characterizations when A behaves like
a geometric sequence.

As usual the notation, A < B means that there exists a constant ¢ > 0 such that
A < ¢B. This constant ¢ may depend along the paper on A (or sometimes only on its ratio
of lacunarity), on p.... We shall specify this dependence to avoid any ambiguous statement.
In the same way, we shall use the notation A ~ B or A 2 B.

2. PRELIMINARY RESULTS

Before giving preliminary results, let us give a few words of explanation about our choice
of measures on [0, 1). This comes from the fact that the measures involved (if considered on
[0, 1]) must satisfy u({1}) = 0. Indeed, we focus either on the Lebesgue measure m (satisfying
of course m({1}) = 0) or on measures such that the Carleson embedding f € MY — f €
LP(u) is (defined and) bounded, so that testing a sequence of monomials g, (t) = t*» we
must have

p({1}) = lim lgnll7, () < lmlgnlTo ) = 0.

Therefore practically, we shall consider in the whole paper measures on [0,1). Moreover,
thanks to the result of Clarkson-Erdds, the value at any point of [0,1) of any function of a
Miintz space can be defined without ambiguity.

We shall need several notions of growth for increasing sequences.

Definition 2.1. e A sequence u = (uy), of positive numbers is said to be lacunary
if there exists r > 1 such that u,4+1 > ru,, for every n € N. We shall say that such

a sequence is r-lacunary and that r is a ratio of lacunarity of this sequence.
e The sequence u is called quasi-lacunary if there is an extraction (ny)r such that

sup(ng+1 — ng) < 400, and (uy, ), is lacunary.

keN
e The sequence u is called quasi-geometric if there are two constants r and R such that
Un+1

we have 1 < r < < R < 40, for every n € N. In particular, these sequences
Un,
are lacunary.

Un+1

e The sequence u is called super-lacunary if — +o0.

n
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Remark 2.2. It is proved in [GL, Prop.7.1.3 p.94] that a sequence is quasi-lacunary if and
only if it is a finite union of lacunary sequences.

The following result is due to Gurariy and Macaev.

Theorem 2.3. [GL, Corollary 9.3.4, p.132]
For p € [1,400), the following are equivalent:

(i) The sequence A is}\lacunary.
t n

(i) The sequence (/\7
12 1l

) in LP is equivalent to the canonical basis of (P.

In particular, since ||t |, = (pAn + 1)_%, we have for any b € cyo

[ = (2o

when A is lacunary, and the underlying constants depend on p and A only.

We shall recover and generalize partially this result: for a given sequence of weights
(wy)n and a positive finite measure p on [0, 1), we study the boundedness of the operator

[P — L)
At b byt

Example 2.4. In the case of the Lebesgue measure ¢ = m and when the weights are
wy(p) = (pAn+1)71 or in a simpler way (when we do not care on the value of the constants)

wy, = A1, Th.2.3 states in particular that T3 and T/i"(p) are bounded on P (w) or ¢P(w(p)),
when A is lacunary.

Remark 2.5. In the case p > 1, a (rough) sufficient condition to ensure the boundedness
of Ty, is

/ (Zw;?tp’)‘")ydu<oo.
[01) >,

Indeed, this is just the consequence of the estimate

_1
T, = su sup ’/ Zanwn"tk"g(t)du’
o ey 9€BLpr,, 0 Ty
_1
< s [l sp [T et
geBLp’(,l,) [0,1) (ZEEC(;Z(Z; n

Let us point out that in the case of standard weights w,, ~ \;;* and for a quasi-geometric
sequence A, this condition can be reformulated with the help of Lemma 2.10 below as

1 1
—d,u%/ — dp < 00.
/[071) 1_t [0’1) 1_tp

We shall come back to that kind of condition later (see Prop.5.5 below for instance).

To get a sharper estimate, we introduce the sequence (D}\“ﬁ(n))n defined for n € N and
p > 1, with a priori values in Ry U {+o0} by

p—1 i
1 _1
Dyh(n) = / wy "t Zwk P Ak du | .
’ [0,1) k>0

Proposition 2.6. Let p € [1,+00). Assume that (ny’ﬁ(n))n is a bounded sequence of real
numbers. Then we have for every b € (P(w),

[t < (S arun(0ize)”)
n>0

n>0

=

<
L7 (p)
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Proof. If p =1 the result is obvious. Assume now that p > 1. For any ¢t € [0,1) and n € N,
we have:

1
bt —bnwﬁptp X wn P )
we apply Holder’s inequality and get:

1 1
An l,;z;' An \ P p A
’ E bt | < ( En |br |Pws ¢ ) ( E wy, 't ")

.
Y

We obtain:

Jou 20

_1 _1 p—1
_/[0 1)Z\bn\pwn.wnpt)‘"(2wk’”t)"“) du
; i
= balPwa DY ()"
n
]

If (DXﬁ (n))n is a bounded sequence of real numbers, we define the bounded diagonal
operator
Djfﬁ P (w) — P (w)
acting on the canonical basis of ¢?(w) whose diagonal entries are the numbers Df\u”ﬁ (n). In
other words, in this case, T}, and Dy"" are bounded, and we have

Vb € £ (w), TR, (O)llLr < DR LGN er(w) -

This gives informations about the approximation numbers of T . Let us specify this notion.
We shall be interested in how far from compact (the essential norm) or, on the contrary, how
strongly compact (possibly Schatten in the Hilbert framework) are the Carleson embeddings.
A way to measure this is to estimate the approximation numbers:

Definition 2.7. For a bounded operator S : X — Y between two separable Banach spaces
XY, the approzimation numbers (a,(S)), of S are defined for n > 1 by
an(S) = inf{||S — R||,rank(R) < n} .
The essential norm of S is defined by
Sl = inf{||S — K|, K compact} .
It is the distance from S to the compact operators.

We shall use in the sequel the following notions of operator ideal.

Definition 2.8.

e An operator S : X — Y is nuclear if there is a sequence of rank-one operators (R;,)
satisfying S(z) = > Ry (z) for every x € X with Y || R,|| < +00. The nuclear norm
n

n

of S is defined as
IS|ln = 1nf{Z||R I, rank(Ry) = 1 ZR _s}

e An operator S : X — LP(u) is order bounded if there exists a positive function
h € LP(u) such that for every x € Bx and for u—almost every ¢t € Q we have

|5(x)(t)] < h(t).
e For r > 0 and when X,Y are Hilbert spaces, we say that a (compact) operator
S : X — Y belongs to the Schatten class 8" if

Z (an(9))" < +oc.

n

In this case, we define its Schatten norm by ||S||s- =

[
/N
=[]
—
S
3
—
n
~
~—
<
N—



Recall that nuclear and Schatten class operators are always compact.
Of course, the Schatten norm is really a norm when r > 1. The S? class is also called
the class of Hilbert-Schmidt operators.

For technical reasons, we introduce the following notation: for a bounded sequence (uy,)y,
in Ry, we define (u}y)n the decreasing rearrangement of (uy)n by
uy = inf Al .
v=nf supfun,n & A}
|A|=N
We h li % =lims )
ehave lim wuy =limsupu,

oo n—-+00
Now, we can state,

Proposition 2.9. If (Dxﬁ(n))n is a bounded sequence of real numbers, then we have

(i) an1(Ty,) < (DYP)(N).
(it) 1T ,llp < sup Dyh(n).
n

(@i) |TY e < limsg) DX’S(n).

n—+

(iv) Wp = 1, [Tl < 3 wa [

n>0

Lo
1

(v) If p =2, then for any r > 0, HT]\U,MHST < <n2>:0 (Dxi(n))r) "

Proof. We first prove (i). For n € N, we denote ¢} : ¢?(w) — C the functional on ¢?(w)
defined by ¢ (u) = u, for a sequence u = (uy,), € P(w). We define also g, € LP(u) by
gn(t) = t*~. For any integer N and A C N with |A| = N, we have:

an1(T3) < [T, = > v @ on
neA

We fix b € ¢?(w) and apply Prop.2.6:
(RSSO B DOrs
neA ng¢A

< su Dva n b o (w
Le(p) — nég( Ayu( ))” e (w)

and so (¢) holds.
Assertions (i7) and (#ii) are direct consequences of (i).
Assertion (iv) follows easily from the natural decomposition Ty, (b) = > @ (b)t* and

the fact that ||¢f|| = w;%

For (v): if (Dj\”i(n))n ¢ " then the result is obvious. If (D}\"i(n))n € (", we have in
particular D}{’i(n) — 0 when n — +o0. Since for all € > 0, the set {n,DKﬁ(n) > el is
finite, there exists a bijection 5 : N — N such that for any n € N, sz(n)* = DXi(B(n))
We have:

ZGNH(T;\U,;L)T < Z (DXi(N)*)T = Z (Dx3(5(”)))r = Z (sz(n))r
N N n n

|

Lemma 2.10. Let a € RY . Assume that A is a quasi-geometric sequence. Then there are
two constants C1,Cy € R such that for any t € [0,1) we have:

Cl<1it)a = ;Aw" = 02(1:)&'

Proof. Since A is quasi-geometric, it is r-lacunary for some r > 1, so there exists a constant
C = (r — 1)~! such that for any n € N, A, < C(\,1+1 — \n). Moreover, there is a constant
R > 1 such that A\, 1 < R\, and hence we have:

Ay & (Ang1 — M) = Ap4
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where the underlying constants do not depend on n. We obtain:

Z)\"‘t’\ gt = A) M 2 > 3" (s — A)*

n Ap<m<Ap41

~ Z Z maflt/\n

n A, <m<Anpi1

For m such that A\, < m < A\,41, we have t™ < t* <t% and so we obtain:
m 1 a 1 a
)\at)\ < a— lt— ( ) < ( ) .
Z Z m 1t/ ~\1—t
On the other hand we have

Z}\at)\" > Zma ltm > (1it) X

meN

O

Remark 2.11. If A is only lacunary, the right inequality in Lemma 2.10 still holds. Indeed,
the above proof can be easily adapted. We can also notice that there exists a quasi-geometric

sequence A’ = (\)),, which contains A, and we have

(a7 (03 4 1
Z )‘nt)\n < Z Xn thn < sz'

neN neN

A new proof of the upper bound part in Gurariy-Macaev theorem (Th.2.3) follows from

the next proposition:

Proposition 2.12. Let p € [1,+00). Assume that the weights are given by w, = \;! or
(pAn + 1)L If A is lacunary and u is the Lebesque measure, then (DXﬁ(n))n s a bounded

sequence.
Proof. From Lemma 2.10 and Remark 2.11 we get:

(DYP () = A¥ /t’\" ( > A%t“)p_ldt

keN

1 i/ _
< M t”ldt+An (1—t)" 7 dt
0 1_ﬁ
)\n 1 p
< A — < 1
W N =Pt

We obtain that (Df\jl’:(n))n is a bounded sequence of real numbers.

From Prop.2.6, we obtain as claimed:

|5 b
neN

for any b € cgp, when A is lacunary.

(T

neN

Let us mention that from Lemma 2.10 and Gurariy-Macaev’s Theorem, one can easily

get an estimate of the point evaluation on M¥:
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Proposition 2.13. Let A be a quasi-geometric sequence and p > 1. For any t € [0,1), the
point evaluation f € MY — 6,(f) = f(t) satisfies

N 1

10| aspy - 0t

1

When A is only lacunary, we only have HétH(Mp)* < ﬁ
A 1—1)r

Proof. We fix p > 1. Since A is in particular lacunary, Gurariy-Macaev theorem gives:
5 2N
16tll ). = s £ sup | S" M ant™ | = (Do Az e
A fEBMX = >0

a€Byp n>
where the underlying constants depend on p and A. We conclude with Lemma 2.10.
In the case p = 1, we can easily adapt the argument, without using Lemma 2.10. Indeed,
in the same way, we have for ¢ close to 1 (say ¢ > exp(—1/A1)):
1 1

A A s
/A~ sup E An@pt™™| = sup Apt™™ < sup st = ~ .
a€Bpn n>0 o n>0 ! s2Xo e|ln(t)| (1 - t)

5

oy

Moreover, if A is quasi-geometric then there exists some § € (0,1) (depending on A only)
and some integer n; such that A, € (6/|In(¢)],1/[In(t)|) so that

) 1
sup A\t > )\ntt“t > =~ .
n>0 e[In(t)]  (1—1¢)

3. REVISITING THE CLASSICAL CASE

Since HT;\U(D Hl = 1, we focus mainly on the case p > 1 and we shall consider the Lebesgue
measure = m on [0,1]. We define the operator

w 2 (w(p)) — MY
TA (p) : { b — Z bnt)\n

where the weights w(p) = (wn(p))nen are given by wy(p) = (pAn + 1)7' = [t* 5. In
particular, if we denote by (eg) the canonical basis of ¢P(w(p)), we have

VE e N, [TV (ex)llp = llexller i) -

(»)

The Gurariy-Macaev theorem says that 7,""’ is an isomorphism if and only if A is

lacunary. By our Propositions 2.6 and 2.12, we recover that Tx(p ) is bounded when A is
lacunary.

We shall also prove that T[i"(p ) is bounded if and only if A is quasi-lacunary (for p > 1).
We shall refine the method used in Prop.2.12 and get a sharper estimate of the norm. Our
approach is different from the original one (which was based on some slicing of the interval
(0,1)). We are able to control the constants of the norms with explicit quantities depending
on the ratio of lacunarity (and p) only. As a consequence, we shall get that for p € (1,400),

the operator Tj\u(p ) is an asymptotical isometry if and only if A is super-lacunary.

Lemma 3.1. Let o € (0,+00), p € (1,400) and (gn)n be an r-lacunary sequence. We have
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i1
1
/

n—k
Proof. Let n € N. For k < n, we have % < p(qk) < pr #» - We obtain:
LR 4 dn
p P’
n—1 % ﬁ n—1 o
4n gy, )0‘ o 1 p
() < S <
k=0 %+% k=or »  T¥ -1
1L
anqp Gn\ ¥ kon
Similarly, when k > n, we use ﬁ < ’(—) <pr e O
m o, 1 dk
p 7

For p € [1,400) we consider the sequence (ijﬁ(n))n defined in section 2, but since we

focus on the case p = m and w = w(p), we lighten the notation and write

DY (n) = (/Ol(p/\n 1) (A + 1)11’t’\’“)p_1dt> "

k

Proposition 3.2. Let p > 2 and A be a (lacunary) sequence such that (pA, + 1), is r-
lacunary. Then we have:

1

1 =
w 2pr-1 g
17l < (14— |
rele-1) — 1]

by
Proof. For j € N, we denote ¢; = (pA; + 1) and f;(t) = ¢ t>‘ ] - We have:
P
(®) (,\\P ' -1 r-1
(DA (n)) :/0 f”(sz) dt = H ka L1 (fndt)
k k "

Since p — 1 > 1, the triangle inequality gives:

1

’ 1 % 1 i
(D/(\p) (n))p < Z I fello—1(fae) = Z (Qﬁ ap / t’\"+(p_1)A’“dt> "
3

= 0
For n, k € N, we have :

1 1 1
o 7

11 1 p P PP
P, P t>\n+(P_1)>\kdt — 4n gy, — 4n 4y, .
. /0 Mt (-1 +1 I O
p P

We apply Lemma 3.1 and we obtain for any n € N:

1

o 1
(DY ®)( P<Z(ank >ﬁ§1+2§0$
a4 e — 1

p P

since p > p’ and using that the term for n = k is 1. Thanks to Prop.2.6, we have
|73, < sup D) (n).
n

O

Let us point out that the operators T;;"(p) : 4P (w(p)) — MY C LP(m) are not defined on
the same scale of LP-spaces, since the weight w(p) depends on p. We cannot apply directly the
Riesz-Thorin theorem with T;\U(l) and TX}(Z) to estimate the norm of T]\U(p) when p € (1,2),
even not the weighted versions of the literature. Nevertheless, we shall adapt the proof in

the next result (which gives a bound different from the one in Prop.3.2; they coincide when
p=2).
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Proposition 3.3. Let p € [1,2] and A be a (lacunary) sequence such that (pA, + 1), is

r-lacunary. Then we have:
1

w 4\
||TA (p)”p < <1+ T ) ’
rz —1

Proof. Our proof is adapted from the classical proof of Riesz-Thorin theorem, with an ad-
ditional trick2 . g
Let 0 = v € (0,1). We have P 1- 3" As usual, for z € C such that 0 < Re(z) < 1,
1 z 1 z
we define — =1 — = and —— = —- We have p(f) = p and p'(0) = p’. We fix a = (a,)n
o M yE T ) ) (o)
a sequence in Ry with a finite number of non-zero terms and a positive function g € LP |
such that [|a||er(w(p)) = |l9]lr = 1. Finally we define

- Y& / t75 N g (1) 7@ dt .

neN

Let us point out that this is actually a finite sum, and F' is an holomorphic function on the
band {z € C| Re(z) € (0,1)}. For x € R, we have

zx|<Zap/ tPAndt = )\ +1
p

neN

On the other hand, for every real number z:

| 1+4iz | < Zap(l / tp(l—%))\ng(t)%dt

neN
/ Z by t¥n dt
neN
P p/\n . .
where b, = a2 and U = (¢,,), = (7> . Since (24, + 1),, is also r-lacunary we can apply
Prop.3.2. in the hilbertian case: "
4 2 |b |2 2
bntwn 1+ r :
Il (e s) (S
_ 1 1 ,
Since = and |b,|* = |a,|P, we have

20, +1  pA,+1

S = el -
— 2 + 1 — pAn +1
We apply the Cauchy-Schwarz inequality and get:

F(L+i2)] < llg% |2 x | Zb”twnHz <1+

4 )%
rs —1/

Now, the proof finishes in a standard way and the three lines theorem gives

|F(9)|§<1+ 4_1>

From this, we conclude easily that for arbitrary a € ¢P(w(p)), we have

w 4
O

1
I

) llaller i

Now we can give a characterization of the boundedness of Tw(p )
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Theorem 3.4. Let p € (1,+00). The following are equivalent:

(i) The sequence A is quasi-lacunary ;
(i) The operator TX)(p) is bounded on P (w(p)).

Proof. Assume that A is a quasi-lacunary sequence. Using Remark 2.2, there exist K > 1
and lacunary sets A; C A (with j € {1,--- , K}) such that A = A; U---UAg. We define the
operators
o[ ) — M
TV ! An
b — ;bnt Ta,; (M)

where T, is the indicator function of the set A;.

K
We have T;\”(p) =5 TU), Since each A; is lacunary, using Prop.3.2 and Prop.3.3, we

j=1
get that TXj(p ) is bounded.

For the converse, we assume that A is not quasi-lacunary. We denote g, = (pAr +1). For
an arbitrarily large N € N we consider the extraction (Nk)gen. It has bounded gaps, so the

sequence ¢y is not lacunary. This implies lim inf d0+)N
k—+oco QLN

= 1, so there exists kg such that
it is less than 2. For ng = koIN we have
qn0+N S 2(]710

Let A = {ng,...,ng+N—1}. Thanks to the inequality between arithmetic and geometric
means, we have:

1
Il = [ |3
0 "jea

1
P X
dt > / | " dt.
0 jeA

We obtain
w N NP NP
1Ty P ()| > =@ 2 > o
N Ano+N dng
jEA

v 1 N . . N

On the other hand, [[Tall7, () = Z — < —- Since N is arbitrarily large and p > 1,
jeA q; Ano

TX’(” ) is not bounded. |

The following is a refinement of Gurariy-Macaev theorem for lacunary sequences with a
large ratio.

Theorem 3.5. Letp > 1. For any e € (0,1), there exists r. > 1 with the following property:
For any A such that (pA, + 1), is re-lacunary, we have:

Vae ),  (1-o)lalowey < ITVP @], < 0 +2)lalowe) -

1
4qa-1
€

q(q—1)
Remark 3.6. If we denote ¢ = max{p, p'}, the parameter r. = (1—|— ) is suitable

for Th.3.5.
4qq%1
€

q(q—1)
Proof. Let ¢ = max{p,p'} > 2 and r. = (1 + ) . In order to lighten the compu-

tation below, we shall write w instead of w(p) so that w, = w,(p)

TP+l
We fix a sequence a € ¢P(w) with ||al/s () = 1. Thanks to the choice of r., when p > 2

1
we apply Prop.3.2 and we get that HTKHP < (1 + %) <14 g When p < 2, Prop.3.3 gives

also HT,‘;’HP < (1 + g) o <1+ g In the two cases, the upper bound part holds.
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For the minoration part, we consider a sequence b € £*' (w) such that [0l v (1) = 1. We

define U = (n)n by ¥y = pA

1
|75 (a).T5 )], = / ]Zanbkwwmk
0

> ‘Z ‘ _ Z \an\ |0k | )
DPAn +1 A+ (- +1
k;«én

We introduce the sequence (¢n)yn = (pPAn + 1) = (wy,*)n- Since [|aler(w) = 1 and by duality
we have

= (p— 1)A\,. We have:

dt

an n
sup{ )\ 1 ||b||ep (W) = 1} =1

For any n, k, Young’s inequality glves.
1 1 1 1
lanbi| = |anws bkwk | x g% qk
1

, 1
< (*Ianl”wn + —,Ibklp Wk) X qn qf;
p p

We sum over n and k, and we obtain:
1

|an|.|bx] ar qF

Z qnn Tk —*”“”ep(w) SUp Z qn -
mkeN — 4+ = —+—
k#n D P P’
1

- aq’

+Z7||b||§p,( )sup Z " k
o P p’

2q

€
Applying Lemma 3.1, this quantity is less than — < = thanks to the choice of r. again.
réd —1

On the other hand, Holder’s inequality gives
u} w w € w
175 (@)-750)| 1 < TR @, [T O], < (14 5) TR @I,

because p't, + 1 = p\, + 1 (hence is also an r.-lacunary sequence), so we can apply the
¥ e Considering the supremum over the sequences b, we finally

obtain, for any r.-lacunary A and for any a in the unit sphere of ¢P(w),

1-1e
(1-¢)< 1+;€ < ||Tf\’(a)Hp <(1+¢)-

O

Before stating the next corollary, let us recall that a (normalized) sequence (z,) in a
Banach space X is asymptotically isometric to the canonical basis of ¢? if for every ¢ € (0,1),
there exists an integer N such that

(1 _€)< Z ‘an‘p)p < H Z AnTn
n>N n>N

for any a = (an)n € coo-
Equivalently there exists a null sequence (g, ) of positive numbers such that for every N,
we have for any a = (an)n € coo:

(1*51\/)( > Ianlp)% < H > ana,
n>N n>N

When p = 2, we can also say that such a sequence (z,,) is asymptotically orthonormal.

=

(1+¢) (Z |an|p)

n>N

(+en)( D |an|p)

n>N
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We can now prove

Corollary 3.7. Let p € (1,+00). The following are equivalent:
(i) A is super-lacunary.
thn

W) in LP is asymptotically isometric to the canonical basis of
|y /n

(it) The sequence (
o,

A'rL-i—l

Proof. Assume that A is super-lacunary: lim = +4o00. As usual, we denote ¢, =

n—-4oo n

An

1 t

(pAn + 1), and f,,(t) = it = W We need to prove that for any € > 0, there exists
p

N € N such that

) =X ) <[ X ansa] a3 haal)’

for any a = (an)n € coo. For a given € € (0,1) we consider the number r. given by Th.3.5.
Since (gy)n is also super-lacunary, there is an integer N large enough to insure that gg41 >
reqr, when k > N and so the sequence (pAn4+n + 1)p, is re—lacunary. We apply the estimate

of ||T;\U(p)('d)||p given by Th.3.5 to the sequence a = (anq§> and we get the result.
n>N

For the converse, let € € (0,1). From the right hand inequality of (1), we get the existence
of an integer N € N such that for any integer n > N, for any u € (0,1),

[fn +wfasally < 1 +2)(1 +uP)r < (1+¢e)(1+uP).
On the other hand, Hélder’s inequality and || f2=1||,, = 1 give

1
U + sy = /0 (o wfusr) f2 A

1
=1 +U/ for [ dt
0

We apply this for u = 5%7 we finally get:

1

1
[ fuatz e <5
0

1
and since p > 1, we obtain / fri1fP7dt — 0 when n — 4-o00.
0

But
1 I 1
/ frnr fE7dt = / g7y qh P A g > g, / A gy = I
0 0 0 n+1
Thus, pl)?f\nii_ll — 0 when n — +00, and A is super-lacunary. |
n+1

4. CARLESON MEASURES

In this section, x denotes a positive and finite measure on [0, 1) and A is a fixed lacunary
sequence. We shall generalize some results of [CFT] and [NT] using the estimates from section
2. In particular, we give a positive answer to a question asked in [NT]: if p is a sublinear
measure on [0,1) and A is lacunary, then the embedding operator i, : MY — LP(p) is
bounded.

Definition 4.1. Let p € [1,+00). We say that:
(1) p is sublinear if there exists a constant C' > 0 such that
Ve € (071)7 ,u([l—{;‘, 1}) <Ce ;

The smallest admissible constant C' above is denoted ||u||s.
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(ii) p satisfies (Bp) if there exists a constant C' (depending only on A and p) such that:

C

(By) Vn €N, / tPAndy < —-
[0,1) An

(iii) pis a Carleson measure for MY when there exists a constant C' (depending only on A
and p) such that, for any Miintz polynomial f(t) = 3" a,t*",
n

11y < Cllflp -

In this case we can define the following bounded embedding:
P - { MII\) — Lp(‘u)

we ;o .
Remark 4.2. The notions defined above are related as follows:
1t e,

i) Since condition (B,) is equivalent to sup, - ) < 400, any Carleson measure
P n>0
for MY satisfies (Bp).

(ii) For p € [1,4+00), we have:

[

 is sublinear = (B))

Indeed, since t € [0, 1) ~ tP*» is an increasing function, [CFT, Lemma 2.2] gives

1 -1
/ tZ’)‘"d,u < ||N||S’/ tpkndt < %
1 0 An

(i) Moreover, if A is a quasi-geometric sequence, and p satisfies (B,) for some p € [1, +00)
then p is sublinear. It is essentially done in [CFT] in the case p = 1. More precisely,
we have:

Iuls < 3pR(sup X, [ )
neN [0,1)
where R is a constant such that A\,11 < RA,.

The previous remarks suggest a natural question: does (B),) imply that p is a Carleson
measure for M% ?

The answer is not clear in general. In [CFT, Ex.6.2|, the authors build a sublinear
measure (so it satisfies (B;)) and a sequence A such that p is not a Carleson measure for
M} . But when A is lacunary we shall see that condition (B,) is almost sufficient for x to be
a Carleson measure for MY}, and even sufficient when p = 1 or when A is a quasi-geometric
sequence.

The cornerstone of our approach is the following remark.

Remark 4.3. For a lacunary sequence A, we can factorize if, through ¢°(w) as follows:

P
ty

My ’ LP (p)
07 (w)

where w = (w,), is a weight satisfying w,, ~ A\, 1. With this kind of weight, the operator
T} realizes an isomorphism between ¢P(w) and M} this is a rewording of Gurariy-Macaev
Theorem (Th.2.3). The most natural weight is w,, = w,(p) = (pA, +1)~! but in this section,
we are interested in estimates up to constants (possibly depending on p and A). Of course,
the results are the same with equivalent weights. So, we choose (in order to simplify) to fix
the weight w,, = A, L.

In particular, by Prop.2.6 we obtain:

gl S 17X,

<supDP(n) ,
n
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and for n € N, by Prop.2.9 we have
a1 (i) S ans1(TF,) < (DP)"(n)

where the sequence (Dpr )(n))n is defined as in section 2 by the formula (here with our
specified weight and since there is no ambiguity relatively to A in the sequel):

DELP)(n) =Dy (n) = (/0 . A2 t)‘ (%)\ t*’“) dﬂ)%
€

We first treat the case p = 1.

Proposition 4.4. Let A = (\,), be a lacunary sequence. The following are equivalent:

(i) wp satisfies (B1) ;
(ii) 1 is a Carleson measure for M}.

In this case there exists a constant C' depending only on A such that

Hzl I < C(Sup)\ / t)‘"du>-
neN [0,1)

Proof. (ii) = (i) is obvious. For the converse, we apply the factorization described in
Remark 4.3 : this gives [|i, | < HTKtuH(T;\U)_lHr On the other hand, Prop.2.9 gives
ITX 1 < sup D,(Ll)(n) and we get the result. O

As a corollary, we recover quickly [CFT, Th.5.5] in the lacunary case: the sublinear
measures satisfy (B1), and so any sublinear measure is a Carleson measure for M}. For the
general lacunary case, we have the following theorem.

Theorem 4.5. Let A = (\,)n be an r-lacunary sequence. Let p be a positive measure on
[0,1) and p € [1,+00). We assume that p satisfies (Bp).
Then p is a Carleson measure for My for any q > p. Moreover, we have

1
71 < C’(Sup)\ / tp)‘"du)q
neN [0,1)
where C depends only on p,q and A.
Before the proof, we prove the following lemma.

Lemma 4.6. Under the same assumptions of Th.4.5, we have

1 1
(D ()" < € sup Ae / #edu)” (sup A / i)
[0,1) [0,1)

k>n keN

where C' is constant depending only on p,q and r.
Proof. Since (Ap) is r-lacunary, for any 4 € R* we have:

1 1
B B -8 -8,
g /\kgl_r_ﬁ)\nand E Ak Srﬁ_l)\n
k<n k>n

For any j € N, we denote M; = /\j/ tPAdp and M = sup M; < 400. Since g > 1, we
(0,1) J
have for any A, B € Ry, (A+ B)?! <2971(A971 + B9~1). This gives:

1 1 —1
(D ()" = /[ A (AL

keN

< AL (Z/\tkk) s [ i (ZA tAk) “du

[0.1) k<n [0.1) k>n
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We estimate the first term above. If p > 1, Hélder’s inequality gives:

1 1 _ 1 z
/ Agtkn(z)\]zt/\k)q 1d,U/ )\T{{(/tpknd'u) (/ Z}\ t/\k p(q 1)du>
[0,1) fn
111
MNP (A i)

k<n

4
Y

IN

| /\

where we used the triangle inequality since p’(¢ — 1) > p > 1. For any k < n we have

/ tp’(q—l)kkdu < / tPARdp < Mk/\lzl. This gives:
[0,1) [0,1)

/ A (30 A ) < (Sulef%)MfA’%_%( A’é_p/(;n)qil
0.1)

k<n = k<n

If p = 1, the inequality t* < 1 gives directly :

1 1 q—1
/ Mt (SN dp < Mox, 1)\73(2)\ ) S M,
[0,1)

k<n k<n

For the second term we treat two cases. First if ¢ — 1 > p, the triangle inequality gives:
1 1 q—1
/ Ad A ( Z Al m) du <Al ( > ||A]gtAk||Lq,1(txw))
0,1) k>n

tl@=DAe+An d,u) Til)

q—1

PR N
< (sup Mk>/\i{ ()\Z("*l))q t= sup Mj,.

k>n k>n
Ifg—1<p,leta= ﬁ Tt satisfies « > ¢ and (¢ — 1)a’ = p. We apply Holder’s
p—1{q—
inequality:
-1
Ad A (ZA tAk> dp
(0.1) k>n

4
o7

SM(/[O,D t%du)z‘(/[m Z/\ £24) du>

N (SA ([ )

where we applied again the triangle inequality. We obtain:
1 1 q—1 1 1 1\q—1
)x;{t/\"<2)\,;’t)"“> d,uSMﬁ‘(bupM /) (ZA" p)
[0,1) k>n k>n

1 1
,SMﬁ(supM ')
k>n
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We finally get:

1 =
(D/(f’)(n))q < My (sup My ) + sup M-
k<n k>n

Now we can prove Th.4.5.

Proof. Since A is lacunary, we can factorize i}, through ¢4(w) as in Remark 4.3. We obtain
111 5 175, ], < 500 D2 o)

and Lemma 4.6 gives the result. O

Corollary 4.7. If p is sublinear and A is lacunary, then p is a Carleson measure for M},

for any q € [1,+00).

Proof. Remark 4.2 implies that the sublinear measures satisfy (Bj), and we obtain:

1
[l < Nealls-

O

The previous fact was proved for p = 2 in [NT, Th.4.3], and the authors announced the
result for p € (1,2) (see [NT, Cor.5.2]). Unfortunately there is a gap in the proof of their
interpolation result [NT, Th.5.1] : the interpolation is not easy to handle in Miintz spaces
because f € M} does not imply that |f| € M% in general.

Th.4.5 has the following interesting consequence.

Corollary 4.8. Let A be a lacunary sequence and p,q € [1,+00) such that p < q.

(i) If if, is bounded, then if, is bounded.

(i1) The converse is false in general.

Proof. 1f if, is bounded, then p satisfies (Bp). Th.4.5 implies that if, is bounded. Assertion
(#4) is a consequence of the examples Ex.5.14 and Ex.5.15 below. O

Corollary 4.9. Let g € [1,+00) and let A be a quasi-geometric sequence. Then we have:

L 1
Jiglmsup ([ antPdu) "
n [0,1)

1
A sup (/[ : Ayt du) * ~ sup (DEL‘Z) (n)) ,
0,1 n

n

where the underlying constants depend only on q and A.
In particular, p is a Carleson measure if and only if it is sublinear.

Proof. Since A is lacunary, Remark 4.2 and Lemma 4.6 give easily:

11 5 s D2 00 5 s (A

n

1 1
)twu)“ S Il -
1

3

On the other hand, since A quasi-geometric, Remark 4.2 (iii) gives:

lulls < sup /[ Mt <
n

)
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5. COMPACTNESS AND SCHATTEN CLASSES

In this part we are interested in the compactness of the embedding

Z-p.{ My — LP(p)
L= f

where p is a Carleson measure for MY.

We turn to the investigation of its membership to various classes of operator ideals. We
are mainly interested in compactness and Schatten classes (when p = 2).

As in section 4, we work with w,, = A, !; we consider the operators T and Ty, and

n

(p)

the sequence D, (n) = Di{""(n) associated to this weight.

Definition 5.1. Let p € [1,+00). We say that:

(i)
(i)

(bp)

Let us point out that (b,) exactly means that lim

1—¢1
 is vanishing sublinear when lim p e 1)
e—0 £

w satisfies (by) when we have:

lim A, tPAdp = 0.
n—4oo [0,1)

Pl _,
noboo [[tre]| L, s

Remark 5.2. Let p be a Carleson measure for M} . We have:

(i)

(iii)

if if, is compact and p > 1, then p satisfies (by).
In order to prove this, we remark that for any & € N we have

1
1 1 )\7;
/0 tAnAﬁtkdt = TM — 0 When n — +OO

1 1
Thus, for any polynomial g we have / tAAg g(t)dt — 0. Since p > 1 the polynomials
0

, 1
are dense in LP and so (\jt*),, converges weakly to 0 in MZ. The embedding i, is
1
compact and so [|Aft* || 1s () — 0 when n — +oo.
For p,q € [1,4+00) such that p < ¢, we have:
 is vanishing sublinear = (b,) = (by).

Indeed, assume that p is vanishing sublinear. For any £ > 0, there exists 7 > 0 such
that [|u1—y,1)lls <. We have :

A / tPAdp < AP u([0,1)) + A / tPAndy.
[0,1) (1-n,1)
The first term tends to 0 when n — +o0 and the second is less than p™ ||| —yy, 1y |5 <
thanks to Remark 4.2(ii).
These assumptions are equivalent when A is a quasi-geometric sequence. More precisely,
for € > 0 close to 0, we have:

M([l -5 1))

£
p

< 3pR tPAn du
[0’1)

where n is the index such that ¢ €

( ,—], and R is a constant such that
p/\n+1 DPAn

Ak11 < RAg for any k& € N. We obtain that p is vanishing sublinear in this case.
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5.1. The case p = 1.

For p = 1, when Z}L compact, p still satisfies (b1) but the method to prove it is not the
same as for p > 1.

Proposition 5.3. Let A be a lacunary sequence. The following are equivalent:
(i) w satisfies (by) ;

(it) i, is compact ;

(iii) i}, is weakly compact.

Proof. Let us prove that (i) = (i4). Since A is lacunary, we can factorize i), through ¢ (w)

as in Rem.4.3: we have zlll =Ty, o (T;\")fl. On the other hand, p satisfies (b1), so we have

Dﬁl)(n) = )\n/ t*dpu — 0 when n — 400. Prop.2.9 implies that an(Ty,) — 0 and we
(0,1)
get an(i),) = 0 when n — +o0.

The implications (ii) = (iii) = (i) are valid for any L'-Miintz space, without any
assumption of lacunarity for A.

(#i) = (i41) is obvious.

(i1i) = (i). Assume now that i}, is weakly compact. We denote H = {\,t*"}. Since it
is bounded in M3}, it is bounded and weakly relatively compact in L'(u), hence uniformly
integrable in L' (1) (see [Wo, Th.III.C.12 p.137]). This means that for any € > 0, there exists
4 > 0 such that for any n € N and any measurable set A C [0,1) with u(A) <6, we have

/ At dp < e.
A

Since p({1}) = 0, there exists s € (0,1) such that u([s, 1)) < 7. We have

/ Mt dy = / At dp + / At dp
[0,1) [0,s) [s,1]

< Aps™p(0,1)) +&.
and since A, 5™ — 0 when n — +00 we obtain that yu satisfies (b). |

Remark. Without any assumption of lacunarity on A, the embedding z,ﬂ is a Dunford-Pettis
operator (i.e. maps a weakly convergent sequence into a norm-convergent sequence) if and
only if 4, is bounded. This is due to the fact that My has the Schur property since it is
isomorphic to a subspace of £} (see [We], see also [G] for some extensions of this result).

5.2. The case p > 1.

Let us mention without proof the next remark (the argument is the same as in Lemma
5.10 below, but we shall not use this result in the general case).

Remark 5.4. Let A be a quasi-geometric sequence. There exist an integer K > 1 and C
depending only on A such that for any n € N we have:

Chsxc / AR dy < Ay / tPrrdp < (D) (n))".
[0,1) [0,1)
We first give an easy sufficient condition ensuring compactness. This is closely related
to the rough sufficient condition ensuring the boundedness of if; stated in Remark 2.5

Proposition 5.5. Let A be a quasi-geometric sequence and p > 1.
d
The Carleson embedding if, is order bounded if and only if 1—'ut < 00.
[0’1) -
This condition ensures that i, is a p-summing operator (see [DJT, Th.5.18]), hence
compact from MY} to LP(u) when p > 1. In the case p = 1, apply Prop.5.3.
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Proof. Since the space MY is separable, it is order bounded if and only if ¢ — sup |f(t)]
fGBMp

belongs to L?(11). Now, the estimate on the point evaluation (see Prop.2.13) gives the con-
clusion. 0

In the same way as for the boundedness problem, we can “almost” characterize the
compactness of if, for ¢ > 1, by testing the monomials.

Theorem 5.6. Let A be a lacunary sequence. Assume that u satisfies (b,) for some p €
[1,400). Then if, is compact for any q > p.

Proof. Since A is lacunary, we can factorize if, through £9(w) as in Remark 4.3: i, = Ty, °

(Tjﬁu)f1 (recall that T is an isomorphism). Prop.2.9 gives:

i8]l S I1TA,lle < limsup D,(j’)(n) .
n—+oo

Since p satisfies (b,), Lemma 4.6 implies that D,(f)(n) — 0 when n — +o00 and so i}, is

compact. O

Corollary 5.7. Let A be a lacunary sequence and p,q € [1,+00) such that p < q.

(i) If if, is compact, then if, is compact.
(i) The converse is false in general.

(i4) If p is vanishing sublinear, if, is compact.

Proof. If if, is compact, then y satisfies (b,) and since A is lacunary, Th.5.6 gives that i,

is compact. Assertion (i) is a consequence of Example 5.14 or Example 5.15 below. At last
(#i7) holds since any vanishing sublinear measure satisfies (by). O

Corollary 5.8. Let g € [1,400) and let A be a quasi-geometric sequence. Assume that p is
a Carleson measure of M. Then we have:

R~ hmsupD( )(n) ,

n—-+oo

/\nt’\"du)a =~ (hm sup

e—0

1—¢,1)\q

il ~ lim sup ( M) ’
n [0,1) €

where the underlying constants depend only on q and A.

In particular, if, is compact if and only if yu is vanishing sublinear.

Proof. We already saw in Lemma 4.6 and the proof of Th.5.6 that:

7 1—e, 1)\ %
Jigle < timsup D) < timsup ([ ) (1 M)
[0,1)

n—-+oo n e—0 9

this part only requires the lacunarity assumption on A.
To get the minoration of [|if || we use [CFT, Th.3.5] : they proved that

liplle = Tim li, |
where p, is the restriction ,u|[17 1 1y. The proof can be easily adapted for ¢ > 1 as it was
noticed in [NT, Prop.2.6] and we have

i lle = lm[l2, |-

Since A is quasi-geometric, Cor.4.9 gives a constant C' > 0 such that for any measure v on
1
[0,1) we have: [|iZ|| > C||v|/&. We have:

1 1—¢e, 1)\
A= T [ 05C | = (1 =21
liglle = dim_[if, 1| > € lim -y 05 = (limsup 52

O

The following result is an improvement of [CFT, Prop.3.2]. The result requires no as-
sumption on the lacunarity of A but a strong assumption on .

Proposition 5.9. If Supp(u) lies in a compact set of [0,1), then &, is a nuclear operator.
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Proof. Assume that Supp(p) C [0, d] with 6 < 1. We fix € > 0 such that (1+¢)d < 1. Since A

satisfies the gap condition, we have the following classical estimate essentially done in [GL,

Prop.6.2.2): there exists K. such that for any Miintz polynomial f(t) = Y axt**, we have
k

jan| < Ke(L+e)* |1 fllp -

My — C
This implies that the functionals e, : SaptM —s a, are well defined, bounded, and
k

we have ||ef|| < K. (1+¢)* .
We define g, : [0,1) — C by g,(t) = t*. The functions (g,), belong to LP(u) and we
have |gn|lLe(u) < 1([0,1))6**. On the other hand, for any Miintz polynomial f, we have

ibf = k;o ex(f)gk- So ik, and kZ;O e} ® gy coincide on a dense set of MY. Moreover, we have

Sllei @ gl < Ken(0.1) Y (81 +)) ™ < 400
k

so ¢% is a nuclear operator. O

5.3. The case p = 2.

From now on we focus on the hilbertian setting.

Lemma 5.10. Let A be a quasi-geometric sequence and p such that zi s bounded.

(i) There exist an integer K > 1 and C > 0 depending only on A such that for anyn € N
we have:

Chnti / R dp < Ay, / 2 ndp < (D (n))*.
[0,1) [0,1)

(ii) For any q € (0,+00), we have:

1

|0 [, )’
£q [0,1) n

in the sense that these quantities are equivalent, up to constants depending only on A
and q.

1
2

I(DP (n))nlles = H()\n/ t”"du)
[0,1)

n 04

Proof. For n € N we have

(DR m)? = 3 ()} /

t>\n+>\kdu > )\n/ t2>\ndu
keN [0,1)

[0,1)

since this last term is the term n = k in the sum. On the other hand, we assume that A
is 7-lacunary. There exists K € N such that 7 > 2 and since A is quasi-geometric, there
exists R € R such that A\y4+1 < RA\g for any k. We obtain:

/\n+K/ s dp < RE, M dp < A, t2 e dp
[0.1) [0,1) 0,1)

and we obtain (7).

For k£ € N we shall denote my = )\k/ txkdu. Assume that the sequence (mé);€ €
[0,1)

1
¢9. We compare HD,(E) (n)|lea and ||m3|| and shall, in some sense, improve the estimate of
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Lemma 4.6. For n € N, we have:

(DPm)* = 3 () /

t*n+*kdu+2(>mk)%/ Pty

k<n [0,1) E>n [0,1)
= DL D DI CRP LR o
k<n k>n

1 1
<m,——— —|—ka o
1_W k>n \/’F

The number (DLQ)(n))2 is less than the n-th entry of the vector A[(my)i], where A =
(Ap k)n.x is the matrix defined by

0 ifk<n
Ap = (1—r—2)"t ifk=n
\/Fi*" if £ > n.
Assume first that ¢ > 2. Since A satisfies
2
bupZAnk< and buPZA”k—l_L’
\ﬁ NG

we can apply the Schur lemma: A defines a bounded operator A : ¢2 — ¢% and we have
[Alls <

- In particular, for (my), € {3 we obtain
G
2 N2 1
) lmi) .
\/F

IO@ @)l < (

Now we treat the case ¢ < 2. Since % < 1, we have

T k>n T4
And we get:
gy 1 N4 1IN0 1y
> D <30 (ma) (=) + X (me) 2 ()
neN n VT keN n=0
< li(ma), I,
where the underlying constants depend on r and ¢ only. |

Theorem 5.11. Let A be a lacunary sequence and q > 0. We have
(i) If (D,(f)(n))n € (7 then we have:
35150 S 1D (1) lea
(i) If moreover we assume that A is quasi-geometric, and q > 2, then we have:
%]l sa == | D (1) lles
where the underlying constants depend only on q and A.

Proof. As in Remark 4.3, since A is lacunary we can factorize zi through ¢2(w), and we get
an(i2) S an(Ty,) and Prop.2.9 gives

D (an(i2))? <> (DY

n
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Assume now that ¢ > 2. As a direct consequence of [DJT, Th.4.7], we obtain that for
any Riesz basis (f,,), of M3 (i.e. an orthonormal basis up to an invertible operator), there
exists a constant C' > 0 such that

T C(Z )

1
The Gurariy-Macaev theorem says exactly that the sequence (f,,),, = (\3t**),, is a Riesz
basis of M3, and we obtain:

121523 (A [ da)”
n [0,1)

and Lemma 5.10 gives the result. |
We also have an integral expression for [|i2 || sa.

Proposition 5.12. Assume that A is quasi-geometric and g > 2. We have:

1 1 %
s () () ) @)

Proof. We denote M,, = \, / t2*ndy. The previous estimate gives:
[0,1)

a\ + 1
li2llse ~ (30 M2) " = (Ma)ully -
n

On the other hand we can apply the theorem of Gurariy-Macaev to estimate an equivalent
of ||(M, )|| 1. We obtain, using Lemma 2.10,

oo = [ S amads |y, = Al(;xn [, Eautnion) )’
_ (/O (/[071);)\Eﬂ(sﬁﬁndu(t))gds);
([ du(t)  \# N
- (/0 </[0,1) (1—Zt2)§+1> ds) .

We get the result since (1 — st) < (1 —st?) < (1+st)(1—st) < 2(1—st) for s,t € [0,1]. O

Note that the previous criterion is the same for any sequence A which is quasi-geometric.
In particular, we have a characterization of the Hilbert-Schmidt embeddings.

Theorem 5.13. Let A be a quasi-geometric sequence. The following are equivalent:

(i) ZZ s an Hilbert Schmidt operator ;

(ii) —d,u < 400 ;
o1 1—1

1 3
In thi have 2152~ ([ ——du)" .
n this case we have [iy || s2 /[ R 1

Proof. Proof 1. We apply Prop.5.12 in the case ¢ = 2. Fubini theorem gives:

1
22 ~// ds=/ Lo
s tefo.y (1 — St o1 1—t

Proof 2. It suffices to invoke the fact that order bounded and Hilbert-Schmidt operators
are the same in an L2?-framework, and Prop.5.5 gives the result. |
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5.4. Examples.

Now we give two examples, showing that in a strong way, boundedness and compactness
of Carleson embeddings on Miintz spaces MY depend in general on p and not only on A.

Example 5.14. Let p € [1,+00). We are going to construct a lacunary sequence A and a
measure p on [0, 1) such that

(A) i, is not bounded when q € [1, p] ;

(B) 4% is compact when g € (p, +00).

Proof. Note that A cannot be a quasi-geometric sequence (see Cor.4.9 and 5.8). We shall
take a measure p with the form py = > ¢,d,, where x5 € (0,1) and ¢ > 0.

E>2
We define Ay = 1, (A\,)n>2 such that for any n > 3, we have \,, > nP™1\,_;. For n > 2
Pl 1 1
let ¢, = %g(n) and z, =1 — Oi(n)- We have x;\L" ~ — when n — 400, and in for n, k
n n

n
An
X

1
such that n > k we have xi” hS (k‘) " . We check that p does not satisfy (B,):

nPlog(n) 1.

3 = log(n) — +oc.

)\n/ tpA’LdM = Z )\nckxﬁ)‘” > )\ncnxﬁ)‘n ~ Ap
[0,1) &

Hence iﬁ is not bounded.

On the other hand, for ¢ > p, we have

An tQ)\n dﬂ’ = Z AnckaAn + >\nCn$%>\" + Z Anckxz)\n-
[0,1) k<n k>n
We control these three terms. For the first:

Z Ancpri™ < Zlog kpik (kq)T" g )\7”(7)

k<n k<n

An_l

Since k > 2 and

— 400, this term tends to 0 when n — +o0o. For the term n = k we

nPlog(n) 1 _ log(n)

n—1

have : )\ncnm‘j{\" ~ An

— 0. For the last sum, x; < 1 gives:

A, nd  pa-p
=X kPlo (k) _ X=X log(k) A
qAn g g n
Z)\nxk Ck < Z )\ T =~ Z 2 X )\k_l
k>n k=n+1 k=n+1

log Z——>0

Thus, p satisfies (by), and using Th.5.6 iy, is compact for any r > g. We obtain that for any
r > p, i, is compact. O

Example 5.15. Let p € (1, 4+00). We shall construct a lacunary sequence A and a measure

p on [0,1) such that
(A) i is not bounded when g € [1,p) ;
(B) % is compact when g € [p, +-00).
Proof. We take again a measure p with the form g = > ¢xds,. Let A = (A,)p>2 with
E>2
X =1, and for all n > 3, A\, > ni”max{p’p/})\n,l
n? log(n)

Let ¢, =————andz, =1—-
et ¢ o Tog(n) and z N

1y 3
such that n > k we have xk < (k‘) e

1
- We have x;\ﬂ ~ — when n — 400, and for n, k
n
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Let ¢ € [1,p). We check that p does not satisfy (By):
nP 1 nP~4

)\TL/ thnd’u 2 Ancnx%)\n ~ )\ni— = — +OO
[0,1) Anlog(n) n?  log(n)

Hence i}, is not bounded. On the other hand, we show that the sequence Df,p ) (n) tends to 0
when n — +oo0:

(DD ()" = 3" A ey (Z)\ )

jEN
a
7

1 1 -
gxﬁcn:ﬂgn(ZAgxgk) ZA%J ) (1 )
. — X
k J

using Lemma 2.10 and Remark 2.11 for the second term. We first control the second term.
If j > n, x m <1 gives:

Sk (1)’

j>n j>n

1

3P N 1
ZAP A %<Zg( )”g >

Aj log(j i>n Aj i>n

1
P

since A\; > jp2 Aj—1. Hence this term tends to 0.
An

1\ %
For j < n we have x;\ < (f) % and we obtain:
J

n—1
To get an upper bound for the part ”3 =n", we split the sum in three terms:

)\ﬁcn (Z/\p )"‘) - ,S)\pcnx (Z)\ ) 71—1-/\”967,’1)‘"(:”
+ )\écnxf‘l” ( Z A,%avﬁ"‘)pi1

For k < n, we have z, <1 and it gives-

1 1 p—1 )\np -1 An—1
ot (Tab) < AL ) ()
o IZ;L e ~ IOg )‘nn Z ~ " An

. ’
since \,, > \,_1nPP .

For the term n = k, we have \,zP* ¢, ~

.
'Y

IN
S|

ApnP

= 0. For £
nPA, log(n)  log(n) - or k=, we

Ak

1\ xn .
have xpF < (7) and we obtain:
n

M cna (ZAP Ak) 51:;(711)”7’}( A%(%)Tny)—l
k>n k>n
1 2k g p—
(S Y

A
and this term tends to 0 since 2271 — 4o0. Indeed one could invoke Lebesgue domination

n
theorem but in a simpler way, for n large enough and k > n, A;/A, is large enough to ensure

GG = ()™=
An n ~—\n - 2k
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since A\, > k*\, > 2(k + 1)\, by definition, when k > n; and this suffices to conclude.

Thus, D,(f) (n) — 0 when n — +o0. Since A is lacunary we can factorize i, as in Remark

4.3. We have i), =Ty o (T,ﬁ“)_1 (recall that T} is an isomorphism) and T}, is compact
thanks to Prop.2.9. Hence Cor.5.7 implies that if, is compact for any ¢ > p. (|
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